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ABSTRACT 
 
While most property and casualty (P&C) insurance companies have preferred to implement risk 

management strategies centered on accounting statements and employing ad-hoc rules and ratios, the 

financial industry successfully embraced Value-at-Risk (VaR) methodology based on cash flow 

analysis (RiskMetrics®, CreditMetrics®, etc.). The historical failure of the insurance industry to 

adopt a modern risk framework has led companies to rely on such capital adequacy standards as 

Risk-Based Capital (RBC)—a methodology that offers almost no assistance to management 

regarding such paramount issues as prudent levels of operational capital, sources of risk, appropriate 

rates of financial return, modeling of future possible economic scenarios, and survival under various 

market stress conditions. 
 
We present a VaR-based platform that allows for integration of assets and liabilities in a rigorous 

risk management framework. This Enterprise Risk Model (ERM) measures all the major risks faced 

by P&C companies: insurance risk, interest rate risk, equity risk, credit risk, foreign exchange, and 

operating risk. 
 
This presentation covers in detail Prerdyct Analytic’s ERM’s (Predyct ERM) characteristics: 
 

• ERM is closely based on the VaR methodology of RiskMetrics® and CreditMetrics®. ERM 

extends this methodology to the long-term risks common to the insurance industry. While 

RiskMetrics’ framework is focused on short-term (3–10 days) trading VaR, we employ a 

much longer horizon of one year. 

• ERM methodology incorporates the correlation structure of assets and liabilities to provide 

enterprise-wide, fully integrated risk analysis. 

• ERM risk factors are estimated from the latest market data. In order to ensure stability and 

statistical significance of the estimates, ERM applies various calibration techniques, such as 

Principal Component Analysis (PCA) and random matrix theory. 

• ERM employs a combination of Monte-Carlo and Quasi Monte-Carlo simulations. The use 

of the Quasi Monte-Carlo technique guarantees speed and high accuracy of the simulation 

output. 

• ERM estimates the risk of the whole enterprise and of each business segment, domestic and 

international. 
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• ERM calculates various risk measures of the net worth uncertainty, including VaR, 

Incremental VaR (IVaR), Expected Shortfall (TVaR), standard deviation, and downside risk. 

The rate of convergence is significantly accelerated with the help of importance sampling 

and robust L-estimates. 

• ERM allocates capital by apportioning the risk and diversification benefits to each business 

segment according to its IVaR share of the total VaR. 

• ERM calculates RAROC and Economic Capital by business segment. 

• ERM provides stress testing such as a stock market crash and scenario testing such as M&A, 

divestiture, yield curve steepening, or inflation pick-up. 
 
Finally, we apply this advanced risk technology to several companies to reveal risk and capital issues 

that cannot be identified with conventional industry risk technologies. The authors will demonstrate 

how this new technology can be used to assist companies in maximizing capital efficiency and 

migrating from a risk management environment that is governed almost exclusively by ad-hoc rules 

of thumb to one that is governed by true risk management principles. 
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1. Introduction 
For most of the last 30 years, risk management has been compartmentalized in narrowly defined 

areas. Market risk was focused on traded instruments and confined to a very short-term horizon. 

Credit risk was split into two disconnected sub-disciplines of originating decisions and on-going 

assessments—neither integrated with other aspects of risk. 
 
The asset and liability management (ALM) risk in major banks and insurance companies was 

confined to short-term forecasts for financial accounting-based net income and cash flow. Using a 

small number of scenarios, net income was tested for sensitivity to specific changes in the shape and 

level of yield curves. In commercial banks, at least, both sides of the balance sheet were included in 

this exercise. In insurance companies, the analysis of income and cash flow was restricted to the 

investment portfolio—the asset side of the institution only. The actuaries were responsible for the 

liability side and were not part of the income simulation process. 
 
Financial risk is defined, in most general terms, as uncertainty of results. To measure risk 

quantitatively, one needs to look at the financial results as stochastic variables and arrive at their 

distributions, such as Profit and Loss distribution. Traditionally, however, actuaries approached risk 

deterministically, in terms of pricing and reserve adequacy. When viewed from this perspective, the 

distinction between the reserve, as the best estimate of the liabilities, and the surplus capital, as the 

risk margin, was blurred. The actuarial process of reserve setting employed deterministic models, 

the end result being a point estimate. A single number was supposed to provide not just the best 

estimate (the expected value) but also afford some degree of risk protection. The protection level, in 

terms of standard deviations or quantiles of the underlying distribution, was not normally indicated. 
 
The performance measurement and capital allocation were yet other compartments with substantial 

differences in methodology among similar types of institutions. 
 
Due to a number of key developments in financial theory and computer technology, this “silo” 

approach to risk management is no longer acceptable. The introduction of the stochastic option 

pricing models (Black and Scholes [1], Merton [2]) and term structure models of the yield curve 

(Merton [2], Vasicek [3]), as well as the rapid progress in desktop computational performance, led to 

the rapid adoption and practical availability of Monte Carlo simulation as a risk management tool. 

By the late 1980s, these developments culminated in the integrated, Value-at-Risk (VaR) based 
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methodology championed by the RiskMetrics team of JP Morgan [4], [5]. The later development of 

quantitative credit models (Merton [6], Jarrow [7], [8], CreditMetrics [9]) completed the analytical 

integration of credit risk and interest rate risk. In words of van Deventer, Imai, and Mesler [10], 

“Market risk, credit risk, and interest rate (ALM) risk all use the same mathematics, the same data, 

they are caused by the same macro-economic factors, and they impact financial institutions in the 

same way.” 
 
The rapid adoption of the integrated risk management by banks and securities firms has been 

necessitated, to a large degree, by the pressure from the regulators. The new regulatory 

requirements, such as Basel II, Solvency II, Financial Services Advisory (FSA), and Australian 

Prudential Regulation Authority (APRA), focus on integrated risk management based on stochastic 

models (e.g., see [11], Call No. 11; [12], PRU 1.4; [13]). The recent accelerated development of 

such regulations in many countries will make it both mandatory and highly urgent for the global 

insurance industry to adopt asset and liability risk management on a joint basis. This integrated 

approach has been standard for the rest of the financial industry for a long time. Common macro 

factors drive the risk on both sides of the balance sheet. Looking at the risk on only one side of the 

balance sheet makes it impossible for management, the board of directors, and regulators to have an 

accurate view of total risk. The very recent introduction of the stochastic actuarial models 

(Zehnwirth [14], England and Verrall [15]) clearly shows that the same mathematics so successfully 

used on the asset side, can and should be applied to the liability risk measurement. There is no doubt 

that the next few years will witness a profound shift within the insurance industry to the modern 

integrated risk management. 
 
This paper presents a VaR-based platform that allows for integration of assets and liabilities in a 

rigorous risk management framework. This Enterprise Risk Model (ERM) measures all the major 

risks faced by P&C companies: insurance risk, interest rate risk, equity risk, credit risk, foreign 

exchange, and operating risk. 
 
Although the paper discusses a number of advanced topics, we strove to make this paper accessible 

to as broad an audience as possible. To this end, the authors adopted a multi-layered approach, 

wherein each section and subsection begins with a general, relatively non-technical introduction, 

before proceeding to a more detailed technical discussion; yet more advanced topics are considered 

in the appendices. 
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The paper is organized as follows. We introduce definitions and objectives pertinent to risk 

management in Section 2. In Section 3, we proceed with the description of the analytical framework 

employed in Seabury Enterprise Risk Model. In Section 4, we introduce the strategic applications of 

ERM with a case study. In Section 5, we make concluding remarks. 
 
The most difficult technical details related to the implementation issues are delegated to the 

Appendices A–D. The “know-how” of the kind covered in the Appendices is seldom discussed in 

the literature. It should be noted, though, that in our experience, it is these highly technical details 

that distinguish between a theoretical development and a practical implementation of an advanced 

model. In the words of Victor Hugo, “La science est obscure—peut-être parce que la vérité est 

somber.”1 

 
2. Risk Management: Definition and Objectives 
In the last decade, the definition of risk management has changed dramatically for reasons we 

outlined in the Introduction. The modern definition of risk management can be summarized as 

follows (van Deventer, Imai, and Mesler [10]): 
 

Risk management is the discipline that clearly shows management the risks and returns of 

every major strategic decision at both the institutional and transactional level. Moreover, 

the risk management discipline shows how to change the strategy in order to bring the risk 

return trade-off into line with the best long and short-term interests of the institution. 
 
This definition includes the overlapping and inseparable sub-disciplines such as: 
 

• Market Risk 

• Credit Risk 

• ALM (Interest Rate Risk) 

• Liability Risk 

• Catastrophe Risk 

• Operational Risk 

• Performance Measurement and Capital Allocation 
 
 
 
 

Science is obscure—maybe because truth is dark (Facts and Belief). 
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The primary focus of this document is to show how Predyct’s Enterprise Risk Model implements the 

best practices of modern risk management in a way that is fully integrated and makes no distinction 

between these sub-disciplines. These sub-disciplines are but different views of the same risk. In 

what follows, we will prove that the mathematics, data and reporting needs, and information 

technology infrastructure are all shared by the sub-disciplines of risk management. 
 
3. Predyct Analytic’s Enterprise Risk Model 
Predyct’s Enterprise Risk Model (P red yc t  ERM) was created with the express goal of bringing the  

best practices of the integrated risk management to the insurance industry. Much more than a simple 

adoption of the methods pioneered by banks and securities firms, Predyct’s ERM represents a new 

methodology specifically designed for the business environment and unique risks of the insurance 

companies. The developers of Predyct ERM had to overcome significant challenges in order to 

address the long-term nature of insurance industry and incorporate the insurance liability risks into 

an integrated stochastic modeling framework. 
 
3.1. Overview 

The remaining sections of this paper will describe the functional aspects of the Predyct ERM in 

somewhat technical terms. We feel it would be a good idea for the reader to have a more general 

idea of how the model works before delving too deeply into these details. This section presents a 

general overview of ERM. 
 
3.1.1. Predyct ERM is a Single Period VaR Model 

One of the principal issues to understand about ERM is that it is a VaR-based single period 

simulation model, although it produces an entire family of VaR measures including Tail VaR 

(TVaR)—also known as Expected Shortfall (ES), Marginal VaR, and Incremental VaR (IVaR). 

VaR is defined as the worst loss that a company may experience over a target period (one year) with 

a given level of confidence (see Appendix D.1 for more details). If a company’s VaR is $100 

million at the 95th level of confidence, this means that there is a 5% chance of losing more than 

$100 million of net worth over this period of time. VaR is always assessed at what is called the 

horizon and the horizon period for ERM is one year. 
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3.1.2. Predyct ERM is a Cash Flow Model 

ERM is a cash flow based model that marks all financial investments to market. ERM marks 

insurance liabilities to model, i.e., the value of the liabilities is the expected value of their future 

payments over the life of the obligation present valued to the horizon. Earnings in ERM are defined 

as changes in the value of net worth (assets minus liabilities). For investments, this is not dissimilar 

to statutory accounting principles where such factors as realized and unrealized gains/losses are 

either added to or netted from a firm’s surplus. The difference, however, is that statutory accounting 

principles do not run these credits and debits through the income statement. ERM, on the other 

hand, converts the firm’s income statement from accounting values to mark-to-market values so that 

realistic rates of return on risk adjusted capital (RAROC) can be attributed in the current accounting 

period. 
 
3.1.3. Predyct ERM Produces a Multidimensional Picture of Risk and 

Risk-Adjusted Performance 

ERM is functionally all about producing two kinds of values: 

1. Risk measures—the company’s total risk, the risk contribution of individual business 

segments (on both stand-alone and allocated basis), and contribution of individual risk 

categories (insurance, credit, interest rate, equity, and forex risks), 

2. Performance measures, with the focus on valuation of cash flows that go toward the 

measurement of the firm’s risk adjusted return on capital (RAROC). 
 
Contributing to a firm’s risk will be the principal risk categories to which non-life insurance 

companies are exposed: Reserve Risk (old business), Underwriting Risk (new business), Equity 

Risk, Interest Rate Risk, Credit Risk, Foreign Exchange Risk, and Catastrophe Risk. One can 

envision that the company’s VaR will be influenced over the next year by each one of these risk 

categories. To understand how this works, one has to consider the cash inflows and cash outflows of 

an insurance enterprise: 
 
Risk Categories specific to Insurance 

• Underwriting Risk is the risk associated with the new business that will be written over the 

target period (between the evaluation date and horizon). This risk has two sources: the 

uncertainty of the new premiums that will be collected over the period and the uncertainty of 
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the future loss payments on the new policies. Income that is allocated to this risk category 

for RAROC purposes is represented by the present value of the collected premium, minus 

the present value of the expected loss and expense, plus interest on the Economic Capital 

allocated to support the Underwriting Risk (see Sections 3.2.1.5 and 3.4). 

• Reserve Risk: Business that was written in the past that still remains on the books and for 

which the company has outstanding reserves is the source of Reserve Risk. Reserve risk is 

defined as uncertainty of the loss payments associated with the prior accident years. Income 

allocated to the Reserve Risk for RAROC purposes is the present value of duration matched 

interest on the insurance reserves plus interest on the Economic Capital that is allocated to 

support the Reserve Risk (see Sections 3.2.1.5 and 3.4). 
 
General Risk Categories 

• Interest Rate Risk: Cash flows generated by ERM are discounted in accordance with the 

term structure of interest rates. ERM simulates individual interest rates for a specified set of 

maturities and captures both parallel and non-parallel shifts in the yield curve. Interest rate 

risk is incurred when there is a mismatch between the company’s assets and liabilities. The 

mismatched income is subject to the interest rate risk of the specific time bucket in which it 

occurs. Cash flows are assigned to time buckets (vertices) in accordance with the 

RiskMetrics methodology that is covered in the next section. 

• Credit risk is defined as uncertainty of value due to changes in credit quality. Credit risk in 

ERM is measured using the CreditMetrics approach which is based on the extended Merton 

model. Merton’s insight was to recognize that the equity in a firm can be considered as a 

call option on the firm’s assets. As a result, the value of the firm’s debt can be expressed as 

the amount of liabilities outstanding reduced by the put option on the assets (the strike being 

the amount of liabilities). In this option theoretic valuation of debt, bonds become riskier if 

the return on the underlying equity is weakening, if the maturity is long versus short, if the 

volatility of the equity is higher rather than lower. The put option reduces the value of debt 

due to the possibility of default. This basic Merton model can be easily extended to include 

rating changes (see Section 3.2.1.4). 
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• Equity Risk: Equity returns are sensitive to systematic and idiosyncratic factors, all of which 

are captured in ERM. Systematic factors include sector and country returns. ERM covers 10 

equity sectors in all developed countries and many developing countries. 

• Foreign Exchange Risk: Income from foreign operations is accounted for in the company’s 

home currency. Foreign income is subject to the same risk factors as income produced in the 

home currency, plus forex risk. 

• Catastrophe Risk: Losses due to natural catastrophes may have a high impact on the 

company operations. CAT losses are rare events with high uncertainty which contributes to 

the overall insurance risk. Also, the large reinsurance receivables generated by the ceded 

CAT losses are usually the largest single contributor to the credit risk of an insurance 

company. When aggregating the catastrophe risk with that of the regular losses within a 

simulation model, the challenge is to properly estimate the impact of the rare CAT events on 

the overall VaR of the company (see Appendix D.3). 
 
The amount of equity capital that a firm must ultimately carry to support all these risks will depend 

on its VaR. A large VaR will signal an advanced warning to the firm’s leadership that it could 

potentially lose a level of capital that may impair its operations in the eyes of its stakeholders. This 

risk is contributed to the VaR from the principal risk categories that have been discussed. But this 

risk is also mitigated by the degree to which these risk categories are interconnected. For most 

companies, a significant reduction in the required risk capital (between one-quarter and one-half) 

could be attributed to correlations inherent in the company’s assets and liabilities. So it is extremely 

important that firms be able to compute diversification benefits with as much accuracy as possible. 

Issues of correlation are discussed throughout most sections of this paper (especially see section 

3.2.3 and Appendix B:). 
 
3.1.4. Virtues of Predyct’s ERM 

The principal virtues that we identify in favor of ERM are: 

• ERM is an integrated model that measures all risks and their interdependencies within a 

single framework 

• All assets are processed at the Committee on Uniform Securities Identification Procedures 

(CUSIP) level and consistently marked-to-market 
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• All liabilities are marked-to-model and valued on the discounted cash flow basis 

• Earnings are defined in terms of net worth (assets minus liabilities) rather than in accounting 

terms 

• The capital that is required to support the company’s risk (and individual business segment 

risk) is identified at a given level of confidence 

• Capital is allocated to support each business segment 

• The earnings performance of each business segment is computed to reflect risk-adjusted 

returns on allocated capital rather than accounting-based measures of earning performance 

that are inherently flawed. 
 
Hopefully, this description will assist the reader by providing a “big picture” of ERM as subsequent 

sections delve into substantial detail of how its capabilities are actually executed. 
 
3.2. Analytical Methodology 

3.2.1. Framework 

• Cash Flows. Predyct’s ERM employs the well established cash flow methodology of 

RiskMetrics®. This methodology far exceeds the “cash flow testing” standards specified by 

Actuarial Standards of Practice No. 7 [16]. While RiskMetrics’ framework is focused on 

short-term (3–10 days) trading VaR, we employ a much longer horizon of one year. 

• Financial Risk Factors. Each asset and liability may have its own idiosyncratic risk, yet be 

affected by macroeconomic factors. Predyct ERM is a multi-factor model that employs such 

risk factors as interest rates of different maturity, equity sector returns, and foreign exchange 

rates in order to capture the effect of the macroeconomic environment. 

• Risk Categories. Bottom-up approach allows for the analysis of the various aspects of the 

company risk. P r e d y c t  ERM emphasizes the following categories: 

- Credit Risk 

- Interest Rate Risk 

- Insurance Risk 

- Equity Risk 

- Currency Risk 

- Catastrophe Risk 
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• Invested Assets. ERM covers all instruments that are held by investment portfolios such as 

government, municipal and corporate bonds, asset-backed and mortgage-backed securities 

(ABS/MBS), common and preferred stocks. All positions are handled at a CUSIP level with 

the most accurate full valuation algorithms applied. 

• Insurance Liabilities. Predyct ERM employs an extensive database of insurance losses of 

all US insurance companies and is working to acquire insurance loss data for the other 

markets. Predyct ERM is based and improves upon the “stochastic reserving” models put 

forward by Zehnwirth [14], England [15], and others. The incremental accident year losses 

are subject to the trends due to varying exposure (accident-year trend), development 

(development-year trend), and inflation (payment-year trend). ERM jointly models the 

development patterns and development-year dependent loss volatility. Catastrophe risk and 

credit risk embedded in reinsurance receivables are also explicitly modeled within the 

integrated framework. 

• Simulation. Predyct ERM utilizes a Quasi Monte Carlo technique [17]supplemented by 

additional regular Monte Carlo randomization. Due to the use of high performance Quasi 

Monte Carlo methods based on Korobov’s lattice rules [18], ERM achieves the speed and 

rate of convergence impossible with regular Monte Carlo methods (Appendix A:). 
 
3.2.1.1. Cash Flow Methodology 

A portfolio of financial instruments may be broken down into a number of future cash flows 

associated with each position. However, in the VaR calculation, the large number of combinations 

of possible cash flow dates leads to the impractical task of computing an intractable number of 

volatilities and correlations. The RiskMetrics methodology [5] drastically simplifies the time 

structure by mapping each cash flow to a pre-specified set of vertices. In ERM, each US 

denominated cash flow is mapped to one or more of the vertices shown below: 
 

≤1yr 2 yrs 3 yrs 5 yrs 7 yrs 10 yrs 15 yrs 20 yrs ≥ 30 yrs (3.2.1) 

 
Mapping a cash flow means splitting it between two adjacent vertices in such a way that both the 

present value of the cash flow and its sensitivity to the zero rates are preserved. As a result of 

mapping, a portfolio of instruments is transformed into a portfolio of standard cash flows. Figure 1 
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shows how the actual cash flow at year six is split into the synthetic cash flows at the five-year and 

seven-year vertices. 
 
RiskMetrics documentation ([5], pp. 43–45) shows that a payment of USD 1 at time t could be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cash Flow Mapping 

 
mapped into a payment of WL at time tL , a payment of WR at time tR ( tL and tR are the two 

adjacent vertices around t, tL < t < tR ), and a cash position C: 
 

t e- ez 
tL 

 
WR = (1-α ) 

 
(t - tL )(tR - t) 

tRtL 

 
This rule assumes that the zero rate zt for maturity t is calculated as a linear interpolation of zero 

rates zL and zR at the vertices, i.e., 
 

zt = α zL + (1- α )zR, (3.2.3) 

 
where α = (tR - t) (tR - tL ) . 
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3.2.1.2. Financial Risk Factors 

As discussed above the Predyct’s enterprise risk management platform relies on a multi-factors 

methodology employed by RiskMetrics risk model. RiskMetrics does not look at the company 

portfolio as a set of assets which ought to be processed independently, but analyzes it in terms of 

common risk factors affecting the value of assets. Predyct ERM utilizes such risk factors as interest 

rates of different maturities for the U.S. dollar (USD) and other currencies, equity sector returns for 

the United States and other countries, and foreign exchange rates. This multi-factor approach is 

widely accepted in the financial industry due to its practicality. One of the benefits of this approach 

is that the assessment of risk that is incorporated into a complex portfolio structure could be reduced 

to the analysis of a limited number of risk factors; correlations between different asset classes and 

risk categories will be derived straightforwardly through the exposures to the specific risk factors. 

Another benefit is that, through the use of a comprehensive set of risk factors, the analyst may model 

various market environments and evaluate the impact to the company arising from the change in 

market conditions. 
 
All factors employed by Predyct ERM can be observed directly in the market, therefore important 
factor 

characteristics such as volatilities and correlations of the returns can be obtained directly from the 

historical price series through the methods of statistical analysis. The distribution of past returns can 

then be modeled to provide a reasonable forecast of future factor returns over the required horizon. 

For each individual instrument, Predyct ERM identifies the set of the specific risk factors which 

drive the change in the instrument price as well as the exposure to each factor. By generating future 

scenarios for each risk factor, Predyct ERM infers changes in the instrument value and re-prices the  

total company portfolio accordingly. Such a bottom-up approach possesses a great degree of flexibility 

and simplifies the broad analysis of the company. 
 
We follow the methodology of the RiskMetrics deriving distributions of parameters for risk factors 

from the historical logarithmic returns series: 
 

rt ,H = ln Pt +H Pt , (3.2.4) 

 
where rt,H denotes the return from time t over the horizon period H to t + H and P is a generalized 

price which, depending on the risk factor, may represent the Treasury bond price, industry index 

value, or exchange rate. RiskMetrics advocates the use of the exponentially weighted returns for the

( ) 



estimation of volatility; this schema assigns more weight to the most recent data and limits the 

effective number of historical returns. While this approach seems appropriate for a short-term 

horizon, it is not suitable for a one-year horizon which is considered necessary due to the nature of 

insurance liabilities. Taking these issues into account the authors’ selected the equally weighted 

volatility estimate, which uses historical data series going back 10 years. 
 
The model for the distribution of future returns is based on the notion that logarithmic returns of risk 

factors are jointly normally distributed. J. Mina and J. Yi Xiao [5] outline the arguments that justify 

the practical use of normal distributions for the problem at hand—fast and accurate estimation of 

various risk statistics for a portfolio driven by a large number of risk factors. 
 
A practical justification for the normal distribution is the simplicity of its calibration. The univariate 

normal distribution can be described by two parameters that are easy to calibrate: the mean and 

standard deviation. Every distributional model has to consider the dependence structure of the 

returns as well as their stand-alone characteristics. The most important practical advantage of the 

multivariate normal distribution is that its dependence structure is uniquely defined by a correlation 

matrix. 
 
Normal distributions though can not adequately describe rare events which result in big losses, such 

as a catastrophe loss. Modeling such an event would require a skewed distribution with a heavy 

negative tail. This issue will be discussed in more details in the CAT risk section. 
 
It is essential that all generalized prices used for the returns and subsequent correlation estimates 

must be denominated in USD. Use of a single currency across all the instruments either domestic or 

foreign in order to produce a correlation structure simplifies a transition from one reporting currency 

to another (rebasing) with no recalculations of the correlation matrix and principal components 

required. 
 
To illustrate this concept let us consider a return on 10-year Treasury strip. The price of the 

instrument is denoted as P10 y . As long as the base currency is USD, the return is a relative change 

in the domestic price: 
 

rt10 y USD = ln Pt
10 y USD Pt

10 y USD( ,H +H ) (3.2.5) 
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If the company operates in Europe and reports its earnings and risks in EUR, then from its 

perspective, a holding of the US Treasury instrument in the investment portfolio would be a subject 

to EUR/USD exchange rate risk. Even if domestic price of the treasury stays the same over the 

horizon period, a change in EUR/USD rate can increase or reduce its value for a foreign company: 
 

rt10 y EUR = ln Pt
10 y EUR Pt

10 y EUR 

= ln Pt
10 y USD ⋅ [USD / EUR]t + H Pt

10 y USD ⋅ [USD / EUR]t 

= ln Pt
10 y USD Pt

10 y USD + ln [USD / EUR]t+H /[USD / EUR]t 

= rt10 y USD - rt[EUR /USD ] 

 
In other words, the Euro-denominated return on the Treasury could be derived from the USD- 

denominated return by simply subtracting the return on the EUR/USD exchange rate. Since the 

same is true for any USD-denominated instrument, the rebasing schema could be depicted as 

follows: 
 

1. Simulate USD-denominated returns for all risk factors 

2. Simulate CCY/USD returns for a new reporting currency CCY for each scenario 

3. Recalculate factor returns by applying simulated foreign exchange rates 

4. Apply new factor returns and produce a new company’s value for each scenario. Calculate 

new CCY-denominated risk statistics from the new distribution of the company values. 
 
3.2.1.3. Risk Categories 

The bottom-up approach allows for the analysis of the various aspects of a company’s risk. 

Breaking risk down into its subcategories proved very useful for understanding the uncertainties 

faced by the company and protecting it from potential losses. These subcategories are nothing but 

different views of the same risk. ERM emphasizes the following categories: 
 
Insurance Risk—the uncertainty associated with future payments of insurance liabilities. The 

factors driving this risk are the size and structure of the insurance business. ERM measures this risk 

from the analysis of the company’s loss triangles and historical underwriting results. 
 
Credit risk—the uncertainty associated with changes in obligor credit quality. On the investment 

side, this category indicates the potential loss in the net worth the company may experience from the 

deterioration in the credit quality of its investments assets. On the insurance side, the main 
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component of the credit risk is the credibility of the reinsurers who may fail to pay on their 

obligations. ERM measures credit risk from the historical rating upgrade and downgrade records. 
 
Interest rate risk—the uncertainty associated with a change in interest rates. It measures a change 

in the net value of fixed income instruments and insurance liabilities resulting from the potential 

fluctuations in interest rates. In most cases, variations in future interest rates impact present value 

through the adjustment of discounting factors. But for some instruments like callable bonds or 

ABS/MBS, changing interest rates may impact the projected cash flows. ERM estimates interest 

rate risk parameters from the historical variations in government yield curves. 
 
Equity Risk—the uncertainty associated with the stock market volatility. ERM applies the 

historical experience of stock market movements to the investment portfolio in order to assess a 

potential loss in equity positions. 
 
Currency Risk—the uncertainty associated with fluctuations in exchange rates. Measures potential 

loss for the company which is doing business abroad and/or keeps instruments denominated in 

foreign currency in its investment portfolio. ERM estimates this risk from the historical variations in 

foreign exchange rates. 
 
Catastrophe Risk—the uncertainty associated with the impact that natural catastrophes may have 

on a value of the company. We will discuss this risk in the Catastrophe Risk subsection of Section 

3.2.1.5. 
 
It is important to note that risk subcategories are not independent. Even though each particular 

category represents a distinct aspect of the enterprise risk, they are driven by the common set of 

factors which, in turn, are closely correlated to each other. Exchange rates are not independent from 

the interest rates of the participating currencies and the credit rating of a company may be closely 

related to its stock performance. As a result, the total risk of the company may be significantly 

lower than the sum of the individual risks. The difference between the two indicates the level of 

correlation that exists between risk categories and is usually referred to as the diversification benefit. 

Unlike many risk management systems that rely on a top-down approach, ERM does not make any 

assumptions about correlations between risk categories and the resulting risk reduction. Estimates of 

correlation arise logically from the bottom-up analyses. We will discuss this issue in more detail in 

the context of risk aggregation capabilities offered by ERM. 
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3.2.1.4. Investment Portfolio 

Common Stock 

Predyct ERM employs the linear regression model assuming that the standardized log return of the 

firm’s value, re , is the weighted average of two standardized returns, namely, the industry return, rI , 

and the firm-specific return, ε: 
 

re = wI rI + σ ⋅  1- wI ε 

 
where ε  N (0,1) and volatility σ could be derived from the historical stock prices 
 
The practical interpretation of the above equation is that the firm’s return can be sufficiently 

explained by the index return of the industry classification to which the firm belongs, with a residual 

part that can be explained solely by information unique and specific to the firm. Firm-specific risk 

can generally be considered to be a function of company asset size. Larger companies tend to have 

smaller firm-specific risk while smaller companies, on the other hand, tend to have larger firm- 

specific risk. According to JP Morgan’s CreditManager, the firm-specific risk follows the logistic 

curve: 
 

1 , 
2 1+ Assets0.4884 × e-12.4739 

 
 
with Assets being the total assets in USD. For asset size of $1 billion, firm-specific risk is 0.46, 

implying wI = 0.54 . For asset size of $100 billion, wI = 0.75 . Each simulation scenario produces a 

realization for all index returns and specific returns for all stocks positions, thus assigning new value 

for the equity portfolio. 
 
Risk-free bonds 

ERM views a risk-free coupon-paying bond as a deterministic stream of future cash flows. Applying 

cash-flow mapping procedure as described in Section 3.2.1.1 above, ERM maps the future payments 

into individual vertices denoted as Wt . To calculate horizon value of the bond, a cash flow at every 

vertex is discounted using the appropriate domestic risk-free curve. The authors selected to use U.S. 

and foreign synthetic zero curves provided by Bloomberg® for discounting cash flows. This 
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procedure can be repeated for all coupon-paying bonds held in the company’s portfolio. Cash flows 

from individual instruments are aggregated into the suitable maturity vertices. 

The market value of the bond portfolio becomes 
 

⎛ ⎞ 
Vh = e- + , 

ti∈vertices j j 

 
where index j denotes the individual bond; zt is the zero rate with the maturity ti , and C is a cash 

position produced from the mapping algorithm. For each scenario, ERM generates the array of 

simulated zero rates, substitutes them into the equation, and calculates a new portfolio value. 

Simulations therefore result in a distribution of the projected portfolio values. 
 
For cash flows that are within the time horizon, ERM takes the conservative approach and assumes 

that the cash flow earns the interest at the constant risk-free short-term rate and so the present value 

at the horizon is just the sum of the accrued cash flows. 
 
Risky bonds 

Unlike risk-free bonds, where future cash flows are deterministic and the projected market value is 

only subject to interest rate uncertainty, the risky bonds have exposure to default risk as well. 

capture this risk, ERM models the change in the credit quality of the bond over the specified horizon 

through the use of a transition probability matrix—rules that shows how credit ratings migrate over 

unit time intervals. Whether the credit rating of the bond improves, deteriorates, or stays the same, 

the market value of the instrument adjusts accordingly. Table 1 below shows transition probabilities 

and resulting values of a hypothetical BBB bond over a one-year period. 

 
 

Table 1. Year-End Values after Credit Rating Migration from BBB 
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ti 

zti ti 

i 

To 

Current Rating Possible Future 
Rating 

Probability Resulting Value 

 AAA 0.02% $101.69 
 AA 0.33% $101.47 
 A 5.95% $101.03 

BBB BBB 86.9% $100.00 
 BB 5.30% $94.86 
 B 1.17% $91.21 



 
 
 
 
ERM employs the CreditMetrics’ asset value model which links the return on a company’s stock 

with its probability of being upgraded or downgraded within the examined period of time. The asset 

value model assumes that the one-year return is normally distributed and that the bond’s rating 

changes to a new value when the normalized return drops below or jumps above the respective 

threshold as illustrated by the following chart. The thresholds could be calculated from transition 

probabilities as dictated by a normal distribution: 
 

Prob(Default) = Prob(r < ZD ) = Φ(ZD ) 
Prob(CCC) = Prob(ZCCC < r < ZD ) = Φ(ZC ) - Φ(ZD ), 

 
which yields for the threshold S: 

 
ZS = Φ-1 , S = CCC, B,�, AAA . (3.2.11) 

 
 
ERM thus evaluates the credit risk embedded in a corporate bond by simulating a return on the 

issuing firm’s stock price. For a portfolio of risky bonds, the co-movements in credit migrations of 

different bonds are captured through the simulation of correlated returns of the corresponding stock 

prices. 
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⎡ 
⎣l =D ⎦ ⎢ ⎥ 

S 

∑Prob(l)⎤ 

 C 0.12% $77.77 
 D 0.18% $47.54 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Distribution of Asset Returns with Rating Change Thresholds 

 
Interest rate risk assessment for a risky bond is analogous to that for a risk-free bond explained in the 

previous section. 
 
Many sovereign and corporate bonds carry a call provision which grants the issuer an option to retire 

(or “call”) the bond prior to its maturity. The callable bond value therefore equals the “optionless” 

bond value, less the call option value. Since the option value depends primarily on the current 

interest rates, and changes along with the changes in a yield curve, this value should be recalculated 

for each scenario whenever interest rates fluctuate. ERM utilizes the Hull-White model of interest 

rate evolution to calculate a value of the callable bond for each simulation scenario. 
 
ABS/MBS 

When calculating risk for ABS/MBS securities, one must take into consideration that these 

instruments (unlike bonds) carry a prepayment provision granted to the borrower. This means 

ABS/MBS may be fully or partially prepaid by the borrower at any time he or she selects. This 

option has a significant importance; its valuation becomes the integral part of ABS/MBS full 

valuation. The proper option valuation requires the use of a prepayment model, which utilizes a 

wide range of historical data and analyzes different economic factors. Implementing such a model 

would go beyond the scope of the ERM platform, instead, ERM relies on key rate durations and the 

expected horizon prices provided by the user or calculated with specialized software like that 

developed by CMS BondEdge® or Citigroup YieldBook®, or other vendors. Key rate durations 
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(also called option-adjusted durations) reflect the change in instrument value with respect to a small 

change in an interest rate for a specific maturity bucket (key rate). Part of this value change comes 

from the variation in prepayment speed, driven mainly by interest rates; therefore this method 

captures prepayment risk rooted into the total instrument risk. ERM calculations also include 

convexity which guarantees a second order of accuracy. Effective duration and convexity are 

estimated from the parallel shift of the entire yield curve. 
 
For ith scenario change in ABS/MBS market value at the horizon becomes 
 

2 
MVh

i = MVh
0 ⋅ ⎜1- EDUR ⋅  Δzi + ECNVX ⋅  Δzi - ⋅ (Δzi -Δzi ) ⎟ , 

j=1 

 
 
 

N 

∑Δz , 
j =1 

 
is an averaged parallel shift, Δzi is a fluctuation of a zero key rate of jth maturity bucket around its 

central horizon value for ith scenario. In Eq. (3.2.12), the effective duration EDUR and convexity 

ECNVX are the first and second degree order changes in the ABS/MBS price with respect to a small 

parallel shift in the yield curve. Like KRDs, they encompass the impact that the changing interest 

rates may have on prepayment speed. 
 
Preferred stock 

Usually insurance companies hold only a small portion of the investment portfolios (up to 2%) in 

preferred stocks. More than 90% of them are of callable non-convertible cumulative types which are 

similar to corporate bonds. To asses their risk ERM treats preferred stock as callable corporate 

bonds with the identical maturity, face value, coupon percentage, and rating. If stock does not have 

a maturity, ERM assigns it the longest maturity term available for a given currency. Given that 

preferred stocks are subordinate to even the least senior bonds, ERM sets their recovery rate to zero. 
 
3.2.1.5. Insurance Liabilities 

Introduction 

Insurance companies assume risks of other entities (individuals and companies) in return for 

payments of premium. While premium is normally paid upfront, before the inception of an 
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insurance contract, loss payments by the insurance company will not take place until after an insured 

event occurs and is reported. Even when the insured event is reported, the exact magnitude of the 

loss payments due to the insured (“ultimate loss”) may not be known for quite some time. The 

determination of this amount (known as “adjustment process”) may be lengthy and involve 

litigation. As a result, the loss payments attributable to any given policy may occur over a period of 

time even after the coverage period ends, potentially in the course of many years (e.g., over a 

lifetime of an insured individual)—a process known as “loss development.” Thus, loss payments 

become a long-term liability for the insurance company and give rise to uncertain future cash flows. 
 
Insurance companies are required to establish reserves, i.e., money set aside, for the future loss 

payments. The reserves consist of case reserves, as set by the case adjusters, bulk reserves—these 

judgmental adjustments to case reserves are established by actuaries on an aggregate basis, and 

Incurred But Not Reported (IBNR) reserves—the latter being an actuarial allowance for yet 

unknown events. The sum of already paid losses and reserves for future payments is referred to as 

incurred losses. 
 
The insurance risk modeling in ERM requires analysis and simulation of cash flows stemming from 

claim payments. From the accounting point of view, insurance liabilities are represented by the 

incurred losses, while the risk management perspective requires analysis of the uncertainty in the 

actual cash flows which are represented by paid losses. A change in the value of the incurred losses 

reflects a change in the internal estimate of the unpaid loss. A measure of variability of such 

estimates would not be representative of the intrinsic fluctuations in the paid losses, and, therefore, 

would not provide a measure of the risk of the associated cash flows. Also, the current practice of 

reserve setting is not based on statistically sound analysis of claim data and is subject to varying 

company policies. As a result, in ERM we concentrate on the development and fluctuations of the 

paid losses. The incurred loss data may be used as a supplement in order to estimate the 

development beyond the period covered by the paid loss data on Schedule P (10 years). 
 
Loss Triangles and Link Ratios 

Historical loss data are conveniently organized in the form of triangles. 
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Table 2. Cumulative Paid Losses 

Development Year 
0 1 2 3 4 5 6 7 8 9 

5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834 
106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704 

3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466 
5,655 11,555 15,766 21,266 23,425 26,083 27,067 
1,092 9,565 15,836 22,169 25,955 26,180 
1,513 6,445 11,702 12,935 15,852 

557 4,020 10,946 12,314 
1,351 6,947 13,112 
3,133 5,395 
2,063 

 
 
The actuarial technique routinely used to analyze loss triangles is the “chain ladder link-ratios” 

method. In this approach, one finds average ratios of cumulative payments in each pair of adjacent 

development years. For example, the average ratio of payments in column 1 to same accident year 

payments in column 0 (averaging could be straight, dollar weighted, “excluding high-low,” etc.) 

would give the development factor between “ages” 0 and 1. From a statistical point of view, this 

technique is based on the assumption that a cumulative payment in one development year is a 

predictor of the incremental payment in the next year, which means, in particular, that incremental 

payments of the same accident year are not independent. On the contrary, statistical loss data 

analysis in the literature [14] and Predyct’s own research show that for most real loss development 

arrays, the incremental payments are independent random variables, and, therefore, standard 

development factor (link-ratio) techniques are inappropriate. 
 
This finding has important implications for both reserve setting (estimates of the mean) and risk 

analysis (estimates of uncertainty). First of all, it can be proven that the “chain ladder link-ratios” 

method produces upward-biased reserve estimates [18]. The consequence for the reserve uncertainty 

is rather subtle: under the assumptions behind the “chain ladder” approach, the probability 

distribution of the incremental payments would necessarily widen as a function of the development 

“age” (similarly to how the volatility of a common stock scales with time). The later development 

years would then make a bigger contribution to the reserve risk than their contribution to the reserve 

itself. On the other hand, under the assumption of statistically independent incremental payments, 
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there is no inherent widening of the distribution with time—although the volatility may still increase 

late in the development because of the low number of claims remaining open. 
 
Statistical Modeling Framework 

It is clear from the above discussion that the natural way to analyze and model paid loss data is on 

the incremental rather than cumulative basis. 

 
 

Table 3. Incremental Paid Losses 

Development Year 
0 1 2 3 4 5 6 7 8 9 

5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172 
106 4,179 1,111 5,270 3,116 1,817 (103) 673 535 

3,410 5,582 4,881 2,268 2,594 3,479 649 603 
5,655 5,900 4,211 5,500 2,159 2,658 984 
1,092 8,473 6,271 6,333 3,786 225 
1,513 4,932 5,257 1,233 2,917 

557 3,463 6,926 1,368 
1,351 5,596 6,165 
3,133 2,262 
2,063 

 
 
The incremental loss development array is subject to multiple trends acting in different directions: 

the natural loss development within each accident year (horizontal direction in Table 3), the change 

in exposure from one accident year to another (vertical direction), and inflation—since calendar 

years are represented by diagonals in Table 3, this last type of trend acts from one diagonal to 

another. P r e d y c t  ERM introduces a modeling framework for the incremental paid loss data that is 

able to capture all these trends. 
 
The model parameterizes the trends in each of the three directions—development years, accident 

years, and payment/calendar years. In what follows, the development years are denoted by j, 

j = 0,1, 2,..., s -1; accident years by i, i =1,2,..., s ; and payment years by t, t =1, 2,..., s . 
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Figure 3. Trends in Loss Data 
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The payment year variable t can be expressed as t = i + j . This relationship implies that both 

development and accident year trends are projected onto payment year trends. 

In its most general form, the model can be written as: 
 

j i+ j 

Pi, j = exp + + + εi, j 
k =1 t =1 

 
Here, Pi, j is the incremental payment amount for accident year i and development year j—the 

payment takes place in payment year i + j ; ε i , j is zero-mean random error (not necessarily normally 

distributed). 
 
The parameters αi in the accident year direction determine the level from year to year; often the 

level (after adjusting for exposures) shows little change over many years, requiring only a few 

parameters. The parameters γ in the development year direction represent the trend from one 

development year to the next. This trend is often linear (on the log scale) across many of the later 

development years, often requiring only one parameter to describe the tail of the data. The 

parameters ιt in the payment year direction describe the trend from payment year to payment year. 

If the original data are inflation adjusted, the payment year parameters represent superimposed 

(social) inflation, which may be stable for many years. This is determined in the analysis. 

Consequently, the (optimal) identified model for a particular loss development array is likely to be 

parsimonious. This allows us to have a clearer picture of what is happening in the incremental loss 

process. 
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in the model (3.2.14) is determined by the distribution of the 

random term ε i , j . It is well known that insurance losses exhibit long-tail distributions. Accordingly, 

the natural candidates would be such distributions as lognormal and fat-tail power-law family. Note 

that the random term in (3.2.14) is additive, so that the incremental payment might become negative. 

This is actually advantageous, because the real insurance data, due to the practices of salvage and 

subrogation, do exhibit this kind of anomaly (as evident from the data in Table 3). 
 
Implementation and Calibration 

The model defined by Eq. (3.2.14) is nonlinear and cannot be reduced to a linear regression. 

Accordingly, the parameters in (3.2.14) should be obtained through a nonlinear regression analysis 

(general nonlinear minimization). In the current ERM version, we accomplish a less ambitious goal 

and approximate Eq. (3.2.14) by a linear model on a log-scale: 
 

j i+ j 

y(i, j) ≡ ln(Pi, j ) = αi + + + εi , j . 
k =1 t =1 

 
Note that Equation (3.2.15) does not allow negative incremental payments; therefore, we are forced 

to drop negative data points from the historical data. 
 
The original equation (3.2.14) has an inherent advantage missing from (3.2.15): any scheme used for 

minimization the random terms in (3.2.14) would be dominated by the large dollar amounts (usually, 

early development years), precisely the ones that contribute most into the risk of the future 

payments. In the log-scale model (3.2.15), if one were to perform an ordinary least-squares 

regression (OLS), the parameters could be driven by the large variations in the small dollar amounts 

of the old development age. Therefore, our approximation of (3.2.14) by (3.2.15) makes it necessary 

to perform a weighted least-squares regression in (3.2.15), the weights being the payments Pi, j 

themselves. 
 
The random term in (3.2.15) is assumed to be normal, so that the incremental payments follow a 

lognormal distribution. We do not assume, however, that the error terms ε i, j come from a single 

distribution. Instead, we model ε i, j as N (0,σ (Pi, j )) , where the standard deviation σ (Pi, j ) becomes 

a function of the incremental payment Pi, j . The chosen scheme of weighted least-square regression 

implies that the variances σ are inversely proportional to Pi, j , the proportionality factor being 

determined by the regression. We, however, make an additional step and assume that σ (Pi, j ) is a 
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general non-increasing function of Pi, j . This assumption is motivated by our research that shows 

that the payment volatility (on log-scale) remains practically constant over a wide range of payment 

magnitude, but once the payments drop below a certain threshold, the volatility begins to increase. 

Therefore, having done the weighted regression as discussed above, we perform an additional non- 

parametric fit of the squared residuals with a monotonous (more specifically, non-increasing) 

function of Pi, j ; this least-square fit is weighted, Pi, j being the weights again. The resulting function 

provides the required estimate of variance σ (Pi, j ) : 
 

ε i
2 = σ (Pi, j ) + υi, j , 

σ (P) ≤ σ (P ) for P > P . 

 
In Eq. (3.2.16), υi, j is an error term; if ε i

2 happens to be non-increasing as a function of Pi, j , then 

all υi , j would be equal to 0. 
 
Theoretically speaking, Eq. (3.2.15) is overparameterized by one parameter and exhibits “perfect” 

multicolinearity: it remains invariant under the transformation 
 

ιi = ιi - Ι, γ i = γi + Ι, αi = αi + iΙ , (3.2.17) 

 
where I is arbitrary. As a result, the mean level of the inflation over all payment years cannot be 

determined (it is included in the development factors γ i ); only the deviations from the mean level 

can be calculated. This situation would change if we knew the accident year exposures so that we 

could normalize the incremental payments and set all αi to be equal to each other. Unfortunately, 

we are unaware of any publicly available information about the exposures or suitable proxies. 

Accident year premiums, in particular, cannot serve as good proxies for exposures due to the varying 

premium rates over a business cycle. In the absence of the company’s exposure data, we get rid of 

multi-colinearity by setting 
 

ι1 = 0 ; (3.2.18) 

 
this means that the rest of the ι parameters measure the difference between inflation in their 

respective years and that in year 1. 
 
Even though Eq. (3.2.15) with restriction (3.2.18) exhibits no theoretical (“perfect”) multicolinearity, 

it still has too many fitting parameters to be of practical use in forecasting. In particular, it is 
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reasonable to require that the development pattern captured by γ i represents a smooth curve. Yet, as 

long as all γ i are estimated independently, this condition cannot be guaranteed. 

achieve a parsimonious model suitable for forecasting and ensure smooth development patterns if we 

significantly reduce the number of parameters in (3.2.15) by setting some of them equal to each 

other or to zero. For instance, we might require that, for a given line of business, γ1 = γ , 

γ 3 = γ = 0 , γ 5 = γ 6 =� = γ , and ι2 = ι3 =� = ιs . We refer to such specifications as a “model 

structure”. We determine the proper model structure for each line of business based on the industry- 

wide experience. The concrete values of the parameters remaining in the model and their standard 

deviations can then be determined for each company; these values can possibly be credibility 

weighted with the results of the industry cross-sectional analysis. 
 
Because parameters γ i and ιi represent trends that will accumulate when we set some of them equal, 

we need to account for a “model risk” by making the parameters themselves normally distributed 

random variables. In the example above, in each scenario we would need to simulate two γ 

parameters, one ι parameter, and only afterwards all the random terms ε i, j . The mean values and 

the standard deviations for this simulation are the output of the regression (3.2.15). Note that 

parameters αi are not trends; these parameters should simply be set to their regression estimates 

rather than simulated. 
 
Note that parameterization is such that in any forecast (simulation) we set the future values of 

parameters αi , γ i , and ιi to be the same as in the last year available from the regression. 
 
In order to account for correlations between the insurance lines and the correlations between assets 

and liabilities, we regress the normalized error terms ε i, j σ (Pi, j ) 

Components and then perform the Principal Component Analysis on the residuals of that regression. 

As the end result of this analysis, the random term in (3.2.15) is represented as a linear combination 

of Principal Components of both assets, PCasset , and liabilities, PC liability , plus an idiosyncratic 

random term: 
 

M N 

ε i , j σ (Pi, j ) = PCi
asset + PCi

liability + ε� , (3.2.19) 
m=1 n=1 

 
are i.i.d. N (0,σ ) , M is the number of principal factors on the asset side and N is the 

number of factors on the liability side. 
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Underwriting Risk (New Business) 

The uncertainty of the loss payments associated with the prior accident years (Old Business)— 

usually referred to as reserve risk—is captured by the model introduced in the previous sections. 

The same model is used in ERM to describe the loss uncertainty of the new business that will be 

written between today and the horizon. This future business has one more component that we have 

not covered yet—the uncertainty of the collected premium. Insurance premium collected per unit of 

risk (premium rate) is subject to market forces; as a result, the insurance industry has gone through 

well documented business cycles of “hard” and “soft” markets. Even though the uncertainty of the 

rate forecast between today and the one-year horizon is usually much less than the rate variations 

over an entire business cycle, the random element in the future premium cannot be removed. 
 
Historically, the insurance business cycles have not coincided with the economic cycles. 

Nonetheless, the existence of a relationship between premium rates and the economic environment, 

in particular, the interest rates, is well known [19]–[22]. Since most collected premiums get invested 

into fixed income instruments, a hike in the interest rates will result in greater investment income 

associated with the new policies. In a competitive market environment, this will result in additional 

pressure towards lowering the premium charged per unit of risk. This negative correlation between 

interest rates and premium rates is more pronounced in casualty lines where claims are settled long 

after the premiums are collected than for short-tailed property lines. 
 
Within Predyct ERM, premium rates are modeled as log-normally distributed variables; the 

correlations between rates in different lines and between rates and the financial risk factors are 

estimated based on the industry-wide data. 
 
Catastrophe Risk 

Losses due to natural catastrophes (CAT losses) are rare events with very high impact. The CAT 

loss distributions exhibit highly non-normal (fat-tailed) behavior. The company specific 

distributions depend on the geography of the insured properties and businesses. As a result, such 

losses are notoriously difficult to model reliably, and the distributions are provided by just a few 

vendors who specialize in CAT risk. When the distribution is available however, it is relatively easy 

to include the CAT risk into the overall framework of ERM. Within the simulation model, we need 

to add catastrophic losses drawn from the CAT distribution to the losses generated in our regular 

model (3.2.15). This procedure will result in adjusted αi (and possibly γ , if we assume that CAT 
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loss development is different from that of the regular losses) in such catastrophic scenarios. In 

addition, the CAT scenarios will have significant reinsurance receivables, hence additional credit 

risk (see below). The real difficulty with catastrophic risk within a Monte Carlo approach stems 

from the necessity to estimate the risk measures dominated by rare events. In Appendix D:, we show 

how application of importance sampling and robust estimators can overcome these problems. 
 
Reinsurance Receivables: Credit Risk 

Reinsurance receivables, in particular those due the ceded catastrophe risk, constitute the greatest 

portion of the credit risk faced by an insurance company.  P r e d y c t ERM breaks down reinsurance 

receivables by the reinsurer and then proxies the credit risk of the receivables by the credit risk of a 

portfolio of risky bonds. The credit rating of the reinsurer gets assigned to the bond, and the amount 

of each receivable becomes the bond face value. 
 
3.2.2. Integration and Risk Aggregation 

ERM is a fully integrated model. ERM does not make any assumptions about a company’s exposure 

to different risk categories or about correlations between them; on the contrary, these characteristics 

arise logically from ERM analysis. ERM employs a bottom-up approach to risk aggregation—the 

only proper way to handle correlations between risks of a dynamic company in a changing 

environment. The top-down approach is based upon the presumption that the total corporate 

structure could be broken down to a number of high level business segments and the total risk could 

be derived from the correlation structure between the segments. While this method is easy to 

implement, it has some major deficiencies: 
 

1. There is usually no statistically sound way to asses these high level correlations. As a result, 

companies have to rely on expert opinion to come up with the estimate for the correlations 

between segments. Expert opinions may be irrelevant in a dynamic market environment. 

2. Business segments are not static; their composition may transform over time. While weights 

of the separate components within the segment change, correlations between the segments 

change as well and this, in turn, may lead to the risk miscalculation. 
 
In contrast, ERM parameters come from current market data and the correlations are measured 

starting from the lowest level (such as individual positions or lines of business (LOBs)) and then 

expanding up to any desired level: for example, to wholly owned subsidiaries or sister companies. 
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3.2.3. Correlation Structure and Calibration 

All ERM risk factors exhibit correlations. It is easy to observe that the yields of different maturities 

move in tandem, or that the equity returns of different sectors are usually highly correlated. Yet it is 

often the case that macroeconomic factors drive the premium rates as well as frequency and severity 

of the insured events, just like they affect the default probabilities in the credit models. For example, 

an increase in the interest rates will result in larger profits from invested premiums, which, in 

competitive markets, will apply downward pressure to the premium rates. Recessions lead to 

increased frequency of Workers’ Compensation claims and increased average age of the insured 

cars. 
 
ERM risk factors and their correlation structure are estimated from the latest market data and both 

public and proprietary insurance data sources. The long-term horizon required by the nature of 

insurance business and the distinct differences between investment instruments and insurance 

liabilities present a number of unique problems for the proper calibration of the correlation structure. 

Among them: 
 

• Stability. The random noise inherent to large correlation matrices will, in effect, get 

amplified over a long forecasting period and, if not filtered out, render the risk statistics 

unreliable. This is especially true if any optimization of a business structure is attempted 

while making use of a raw correlation matrix. 

• Correlation between assets and liabilities. Large correlation matrices commonly 

employed on the investment side require long time series for estimation. The large required 

number of data points does not present a problem for financial time series which are 

generally available on a daily basis. On the other hand, the natural time unit for insurance 

data is one year, and it would be practically impossible to collect a sufficient history of 

premium and loss data without incurring complicated seasonal effects. As a result, there is 

no feasible way to represent both investment assets and insurance liabilities in the form of a 

“grand” correlation matrix. 
 
In order to assure stability and the statistical significance of the estimates, Predyct ERM applies 

various calibration techniques, such as Principal Component Analysis (PCA) and regression 

analysis. ERM employs the latest techniques of random matrix theory developed in physical science 

[24] in order to discriminate between significant components and noise. PCA drastically reduces the 
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“effective” dimensionality, which allows establishing the dependence of the insurance risk factors on 

the macroeconomic environment through regression analysis (Appendix B:). 
 
3.2.4. “Stable” Simulation. 

A single set of risk measures may satisfy a regulatory requirement but it is unlikely to give a 

complete picture of a company’s risk. Risk managers will want to know the sensitivity of the 

model’s output relative to changes in input assumptions such as expected equity returns and 

premium rates. They will also want to investigate different scenarios such as a removal of a specific 

holding or instrument class, or an addition of a line of business. 
 
Simulation models always present a problem in this regard due to the inherent variability of 

simulation results between any two runs. When input assumptions change, the simulation variability 

may easily mask the sought changes in the output. As a result, the sensitivity and directional 

analysis can be rendered questionable unless an extremely large number of simulations are 

performed in each run. Even the discrete changes of scenario analysis become problematic. Thus, 

the requirement that “small changes in the simulation input always lead to small changes in the 

output” becomes of critical importance. We refer to such quality of a simulation model as “stable 

simulation.” 
 
Predyct ERM solves this problem by employing a patented “seeding” technique. Each and every 

variable receives its own random or quasi-random number generator, which is uniquely seeded 

(initiated) depending on the financial instrument or risk factor that the variable describes (Appendix 

C:). The end result is a “stable simulation” framework that always allows two different runs to be 

directly compared, as long as the number of simulations does not change. 
 
3.3. Risk Reporting 

An enterprise risk model should provide a comprehensive set of reports that enable risk managers to 

see different aspects of a company’s risk. Risk reporting usually occurs at different levels within a 

company including the corporate level, subsidiary level, and business unit level. It is crucial that 

business units and subsidiaries use the same methods and follow the same guidelines to produce a 

standardized set of risk reports across the corporation. 
 
The risk reporting capabilities possessed by ERM allow its users to analyze many different aspects 

of risk. ERM provides risk reports by risk category or business line; it can combine portfolios, 
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individual companies, or company groups. This integrated approach to risk measurement enables 

rapid creation of new reports and customization of the existing reports upon request. 
 
Banks and securities firms calculate risk at a short-term (3 to 10 trading days) horizon appropriate 

for trading operations. They traditionally report risk in terms of Value-at-Risk, but, often, a 

simplifying assumption of a normal distribution is made, and VaR is calculated in terms of standard 

deviation. For insurance companies, on the other hand, one year is a natural reporting horizon. 

Insurance operations, as a rule, are prone to rare but significant losses which manifest themselves in 

the highly non-normal, fat-tailed P&L distributions. Unlike the standard deviation, the properly 

calculated VaR-based metrics focus on the tail of the P&L distribution—on rare events that may 

threaten the very solvency of the company. These considerations are endorsed by regulatory 

authorities. The proposed Solvency II regulations require insurance companies to calculate VaR and 

similar risk measures on a longer-term basis of a one-year horizon. Solvency II specifically 

encourages the use of Tail VaR (TVaR, Expected Shortfall) (see [11], p. 105) defined as the 

expected amount of loss when the loss exceeds VaR. Tail VaR is conceptually close to measuring 

the risk in terms of the value of a hypothetical put option that would be required to completely hedge 

the losses over a certain threshold. This metrics possesses a number of desired qualities [27] and has 

become increasingly popular in risk management. 
 
The standard ERM risk reports include Profit-and-Loss (P&L) distribution and such risk measures 

as: 

• Standard deviation—by business unit and risk category. 

• VaR—by business unit and risk category 

• Expected Shortfall, also known as Tail VaR (TVaR)—by business unit and risk category. 

• Marginal VaR and TVaR—by business unit. Marginal VaR refers to the change in the 

company’s VaR when a business unit is added as a whole. 

• Incremental VaR (IVaR) and TVaR—by business unit. Incremental VaR measures the 

change relative to a gradual expansion of the unit. 

• Downside probabilities—at the corporate level. Downside probability is defined as 

probability of losing a certain fraction of the Net Worth. 
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VaR-based metrics measure the risk of rare events, such as catastrophes. If there happen to be just a 

few of scenarios with such events, these tail risk measures may not be estimated reliably. Predyct 

ERM improves the convergence of the VaR metrics with help of importance sampling and 

statistically robust L-estimation procedures [29], [30] (see Appendix D:for details of these 

techniques). 
 
In addition to various risk measures, ERM calculates Economic Capital (EC) required to support the 

solvency at a given probability level. The EC is allocated to each business unit in proportion to their 

Incremental VaR, as supported by modern financial science. Finally, to facilitate performance 

measurement, Risk Adjusted Return on Capital (RAROC) is calculated for each business segment. 
 
3.4. RAROC and Capital Allocation 

After the company’s overall risk has been assessed along with the risk contributions from each of the 

principal risk categories, management will want to assess the performance of each of its business 

segments. The relative profitability of different business segments could be gauged from the 

RAROC estimates calculated for each segment. 
 
The authors believe that individual business return performance should be based on stand-alone 

RAROC rather than providing an allocated diversification benefit to each business. We believe that 

any benefit that accrues to a business activity resulting from the company’s portfolio structure 

should be credited to a general corporate account rather than to the individual business activity that 

had nothing to do with creating the benefit. 
 
3.4.1. LOB RAROC 

ERM breaks the risk, capital, and RAROC for each business activity or LOB down into Reserve 

Risk and Underwriting Risk components. The benefit of breaking the LOB performance down into 

Reserve (past business) and Underwriting (new business) parts is that it allows management to 

evaluate the effectiveness of its pricing policy on past as well as future business. The total RAROC 

will not provide this information. 
 
RAROC on the Reserve Risk represents the return for past business that has already been accepted 

and will include all the reserve strengthening that has occurred on that business to date: 

 
 
 
 

37



Reserve RAROC = 
PV(Duration matched interest on insurance reserves) + Interest on EC = 

PV(EC ) 

 
where Economic Capital EC refers to the stand-alone risk of an LOB. 
 
Underwriting Risk RAROC represents the expected return that the company should obtain for the 

premium that it will collect in the next period—the next 12 months. Management will want to input 

into the ERM model all of the risk factors that it believes may be experienced in the next period, i.e., 

premium rate increases or declines, premium volume, expense, economic, and investment rate 

factors, etc. In this way, management will learn what type of return it should expect to make in the 

next period given its current pricing strategy. 

Underwriting RAROC = 
PV(Premiums) - PV(Expected Losses) - PV(Expenses)+ Interest on EC = 

PV(EC ) 

 
where Premiums—to be collected in the next period; Expected Losses (Losses and ALAE)—for all 

future periods while reserve is still active; Expense (ULAE and Overhead)—for all future periods 

while reserve is still active. 
 
3.4.2. Investment RAROC 

Investment RAROC measures the effectiveness of the investment policy put into practice by the 

investment department: 

 
Investment RAROC = , (3.4.3) 

 
 
where Economic Capital EC refers to the stand alone risk of the investment segment, MVp is the 

market value of the investment portfolio, R —return on the portfolio, Pt —internal transfer rate, i.e., 

the rate the investment department uses to borrow money from the insurance group. Investment 

department then credits the insurance group with the risk-free duration matched (to duration of 

Reserves) interest rate on funds borrowed. The internal transfer rate may also be adjusted to reflect 

the firm’s external borrowing. 
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3.4.3. Total Company RAROC 

The total RAROC sums up the Reserve Risk, Underwriting Risk, and the Investment Risk. 

Overhead is allocated to each business unit in accordance with actual usage. 
 

Combined RAROC = 
Income(Underwriting ) + Income(Reserve) + Income(Investments) . 

EC(Company) 

 
Total company RAROC becomes particularly important when the company’s performance is 

evaluated relative to a peer group, or compared to the average industry performance. 
 
3.4.4. Other Performance Measures 

It is important to note that RAROC performance should be a significant criterion of financial 

performance measurement, but it is not the only important criteria. RAROC, by itself, will not 

inform management of the shareholder value contribution of a business activity. An important driver 

of shareholder value is earnings growth which is not measured in RAROC. Also, shareholder value 

measurement measures the return on a company’s market value, not on its economic capital; and the 

required return (RR, the discount factor applied to the company’s earnings) that is embedded in the 

shareholder value formula includes an adjustment for systematic risk, while RAROC does not. We 

can express the shareholder value in at least two different ways: 
 

Market ROE = 
Book RR - Growth 

 
or: 
 

Earnings 
RR - Growth 

 
The reader will observe that there is a significant difference between these two methods of 

measuring financial performance. A one-period model for RAROC puts all the emphasis on 

earnings that are collected for, at most, one more year. Investment income in RAROC is present 

valued at the risk-free rate of interest (or some other transfer rate). Future growth of earnings 

possibilities is not considered under RAROC. For this reason, the authors caution that, while 

RAROC is an indispensable piece of information for assessing financial performance, it is not the 
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only earning performance measure that should be considered. However, the purpose of this paper is 

to present and discuss a unified risk theory for measuring insurance company risk and capital 

requirements. The authors acknowledge that there is not agreement between RAROC, as defined 

here, and shareholder value measurement. However, we do believe that RAROC, as defined, does 

reveal the relative financial return on risk-adjusted capital among a company’s business activities or 

lines of business. We reserve the discussion of shareholder value unification with that of RAROC 

for a future paper. 
 
3.4.5. Capital Allocation 

Capital allocation is another major subject where ERM may assist the management in making 

strategic decisions. The authors have used the Incremental VaR (IVaR) of a business line as 

opposed to the stand-alone business risk to allocate capital on what we call an “economic” basis. By 

economic basis of capital allocation (as contrasted with that of stand-alone business risk allocation), 

we mean that management should know where its capital is actually being allocated to support risk 

in contrast to how we advocate that individual business performance should be measured on a stand- 

alone basis. This is in keeping with our prior statement that individual business performance should 

not receive a credit that is not the result of its own activity. The use of IVaR for economic capital 

allocation purposes ensures that capital will be allocated on an economic basis to each business 

activity in proportion to the risk that each activity contributes to the total company risk. The stand- 

alone risk allocation of capital to business activities would not be appropriate for understanding the 

economic allocation since the sum of the individual stand-alone risks will be larger than the total risk 

of the enterprise owing to the correlations between the business sectors. As a result, the total 

required enterprise capital may be miscalculated. 
 
4. ERM as a Strategy-making Tool: Case Study 
A versatile risk management platform should also provide management with a tool to assess the 

effectiveness of its business strategies. ERM provides this capability by having a robust scenario- 

generating capacity that allows its users to test the risk and profitability of each business strategy. 

We identify the following classes of scenario: 
 

• Changes in market environment—analyzes the impact of changes in market conditions, 

like interest rates, return on stock market, exchange rates… 
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• Changes in business environment—analyzes the impact of changes in premium rates and 

their volatilities, expansion/contraction of the business, adding/removing lines of business… 

• Changes in the investment portfolio—analyzes the impact of changes in the investment 

portfolio structure, including modifications of portfolio composition, adding/removing 

specific holdings or instrument classes… 

• Mergers and acquisitions—potential effect that acquisitions or mergers may have on the 

individual company or merged group of companies. 
 
4.1. Case Study—Cargo Inc. 

Cargo Inc. (Cargo) is a multi-line property and casualty company that writes business on a 

nationwide basis. Cargo is a real company but the authors have disguised its name and its numbers. 

Only publicly available information has been used to assess the operations of Cargo. 
 

1. The analysis was compiled from the following sources of information: 

a. 2004 Regulatory Statement including Schedules D and P from Highline Data 

b. 2004 Annual Statements and 10K’s and 10Q’s 

c. Bloomberg and Dow Jones for financial data 

d. CMS BondEdge for key rate durations and cash flow projections for all ABS & MBS 

securities 

e. Only publicly available sources (retail or otherwise) of information were used—no 

company contact 

2. The analysis consists of a base case and five scenarios 

3. The analysis will include insurance risk, interest rate risk, equity risk, credit risk and foreign 

exchange risk 

4. The analysis will not include 

a. Catastrophe risk; unless captured in the last 10 years from Schedule P 

b. Operating risk 

c. Prior year losses (i.e., losses unpaid older than 10 years) 
 
The following two tables summarize the investment portfolio of Cargo and its business lines: 

Table 4. Cargo’s Investment Portfolio 
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Asset Class Market Value Composition 
Sovereign Bonds 670,000,000 12% 



 
 
 
 
 
 
 
 
 

Table 5. Cargo’s Lines of Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our primary goals with this case study are to: 
 

1. Determine the company’s VaR at the 99% confidence level 

2. Determine how much risk is contributed by the five categories of risk 

3. Determine how this capital needs to be allocated to Cargo’s different business activities 

4. Determine the company’s downside risk 

5. Determine the impact to the company of various economic and stress scenarios 
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LOB P&C Business Line Premium 
A A. Homeowners/Farmowners 266,985 
B B. Private Passenger Auto Liability/Medical 92,381 
C C. Commercial Auto/Truck Liability/Medical 102,181 
D D. Workers' Compensation 93,057 
E E. Commercial Multiple Peril 400,575 
F F1. Medical Malpractice—Occurrence 53,198 
FC F2. Medical Malpractice—Claims-Made 17,836 
 
G 

G. Special Liability (Ocean Marine, Aircraft (All Perils), Boiler And 
Machinery 

 
78,070 

H H1. Other Liability—Occurrence 339,150 
HC H2. Other Liability—Claims-Made 65,150 
M M. International 0 
N N. Reinsurance A—Non-proportional Assumed Property 0 
O O. Reinsurance B—Non-proportional Assumed Liability 0 
P P. Reinsurance C—Non-proportional Assumed Financial Lines 0 
R R1. Products Liability—Occurrence 25,582 
RC R2. Products Liability—Claims-Made 145 
 
I 

I. Special Property (Fire, Allied Lines, Inland Marine, Earthquake, 
Glass, Burglary And Theft) 

 
490,777 

J J. Auto Physical Damage 88,196 
K K. Fidelity/Surety 11,823 
L L. Other (Including Credit, Accident and Health) 39,461 
SS S. Financial Guaranty/Mortgage Guaranty 0 
Total  2,164,563 

Municipal Bonds 83,000,000 2% 
Corporate Bonds 2,166,000,000 40% 
ABS/MBS 2,210,000,000 40% 
Common Stock 329,000,000 6% 
Preferred Stock 0 0% 
Total 5,458,000,000 100% 



Predyct set up a Base Case assessment of Cargo’s risk with alternative scenarios to assess the 

impact that these particular scenarios would have on the company’s VaR: 
 

• Base Case: Steady-State 

- Based on Cargo’s 2004 Regulatory Statement 

- Assumes Cargo will write the same amount of new premium in 2005 as it wrote in 2004, 

i.e., same operating ratio of 1.3 

- Assumes that premium rates will remain the same in 2005 as in 2004 for all lines 

- Assumes the premium volatility is zero 

- Assumes a 7% return on all US equity sectors 

• Scenario 1: 

- Same as Base Case, except that Scenario 1 assumes that premium rates on the biggest 

line, Commercial Multiple Peril decline 5% with 10% premium rate volatility. 

• Scenario 2: 

- Same as Base Case, except that Scenario 2 assumes that U.S. yield curve shifts upward 

100 bp 

- Comments: We believe that any company should be aware of its sensitivity to yield curve 

shifts. A 100 basis point shift is not terribly significant and management should 

anticipate moves of at least this magnitude. 

• Scenario 3: 

- Same as Base Case, except that Scenario 3 assumes that the return on U.S. stock market 

is a negative 10% 

- Comments: Companies will want to understand the sensitivity of their equity portfolios to 

equity market movements. We believe that there is lots of precedent for equity market 

returns of minus 10% and that this is a realistic scenario for management to observe. 

• Scenario 4: 

- Combination of Scenarios 1, 2, and 3. Premium rates for Commercial Multiple Peril 

decline 5% with 10% premium rate volatility, US yield curve shifts upward 100 basis 

points, the return on US stock market is a negative -10%. 

- Comments: Risks are typically correlated in one way or the other. The interactions of 

these risks can be quite complicated and the complete distribution of their mutual 
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integration needs to be understood in order to assess the potential impact of complex 

economic events. The authors believe that Scenario 4 is a probable event for which 

Cargo should be prepared. 

• Scenario 5: 

- Premium rates for all LOBs decline 15% with 20% premium rate volatility, US yield 

curve shifts upward 300 bps, the return on US stock market is a negative 10% 

- Comments: This Scenario represents an extreme stress-test to which the author’s 

subjected Cargo. We believe that there is precedent in the historical markets for the 

potential realization of this event and therefore something that Cargo’s management 

should consider. For example, between September of 1980 and September of 1981, the 

yield on 10-year Treasury obligations rose by 398 basis points while equity markets 

dropped 7%. There have been openly speculative, yet sober, discussions occurring in 

prominent economic circles about a potential “hard-landing” for the U.S. economy. This 

scenario has the US twin deficits tempering the amount of U.S. treasuries foreigners are 

willing to hold; interest rates spike, equity markets tumble, and a recession ensues in 

which the prices of goods and services (along with insurance prices) also fall. The 

authors submit this scenario as an example of an extreme stress test and leave the 

weighting of its validity to Cargo’s management. 
 
The Base Case is intended to evaluate the risk and return of Cargo under conditions as close to the 

business climate as has prevailed for the last 10 years as possible. In other words, the base case 

should reflect management’s view of the firm’s required capital in the ordinary course, or steady- 

state. Each of the subsequent scenarios is intended to simulate a condition that management believes 

has a probability of occurring. How high of a probability is a matter that will be discussed later. 
 
The objectives of the ERM analysis should be to determine if the company has: 1) enough economic 

capital to support its business activities at a specified level of statistical confidence through a variety 

of adverse economic scenarios; 2) to develop an understanding of the company’s downside risk, i.e., 

the chance probability of losing a certain amount of its capital in any one year; 3) to ensure that 

capital is allocated to business activities in proportion their respective risk contributions; and 4) to 

ensure that the rate of return on capital for each business activity is understood. 
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Management should know the answer to each one of these questions for each business strategy that it 

undertakes. Each business strategy should also be stress-tested. In this way, the risk and return of 

different strategies can be compared. 
 
4.2. Four Principal Drivers of Economic Capital 

The authors believe that there are four principal drivers of the amount of economic capital that 

companies should carry: 
 

1. Capital in the ordinary course, i.e., steady-state capital 

The amount of capital that is required given a company’s VaR at a specified level of 

statistical confidence. The statistical confidence results from the model’s data 

parameterization period. Steady-state capital does not capture rare market events. To 

capture this issue, management needs to perform stress-tests. 

2. Operational risk capital 

The authors define operational risk capital as the capital that is required to support losses 

that result from a company’s failed internal processes, such as losses that result from a 

failure to draft contracts tightly; losses that result from systems failures, etc. 

3. Capital for adverse market movements—stress-tests 

The amount of capital that is required to sustain a company through severe market 

dislocations and volatility, also known as market events. We may know these events by 

names such as: October 1987, The Asian Crisis of 1997, or the equity market crash of 

2001. The point is that these events are often not represented in the historical data 

parameters of the enterprise risk model—any model has this limitation. As such, these 

events need to be imposed on the model in order to learn what their impact would be on 

the company given the particular structure of its assets and liabilities. 

4. Catastrophe risk capital 

The amount of capital that is required by a company to safely absorb losses that result 

from its catastrophe exposures. 
 
4.3. Risks Omitted from this Case Study 

It is important to say at the very beginning that this case study will not attempt to evaluate the risk 

capital that will be required to support Cargo’s operational or catastrophe risk (other than what has 
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been captured in the last 10 years of the paid loss triangles). The principal purpose of this exercise is 

to reveal the dynamics of measuring integrated risk with those fields of information that are available 

to us on a robust basis from publicly available sources. This includes: interest rate risk, credit risk, 

foreign exchange, and insurance risk (non-catastrophe). Reliable figures on operational and 

catastrophe risk are not readily available from any source other than the company itself. Therefore, 

the economic capital assessments and allocations that are made in this exercise may appear low due 

to the omission of these two factors. Predyct’s ERM engine does possess the ability to readily 

integrate and aggregate a company’s operating risk and catastrophe distributions with that of the rest 

of its risk so that a total solution is realized. The principal issue that we are attempting to illustrate 

in this case study is how economic capital is impacted within an integrated framework, from a 

base case realization to that of various stress-tests. 
 
4.4. Operational Risk Capital 

The difficulty of quantifying operational risk is that there are no public databases that record and 

classify these events such as there are for most of the other categories of risk—interest rate risk, 

credit risk, paid losses, etc. As such, the first thing that any company will discover as it implements 

an integrated enterprise risk management system is that the economic capital requirement will often 

be significantly less than the company’s actual capital level (nominal capital). The difference 

between companies’ nominal capital and economic capital should generally be attributed to three 

sources of risk: 1) Operational risk, 2) Catastrophe risk, and 3) Market Event risk. 
 
We have identified catastrophe risk as well as what the grab-bag of operational risks may consist. 

Market events, and the capital required to support them, can be described as those events that occur 

in the market whose expectation may fall outside the model’s historical data parameters. For 

example, Predyct’s ERM is parameterized with 10 years of data for both assets and liabilities for 

which we obtain annual updates. This means that Predyct’s ERM utilizes historical probabilities of 

the events that have occurred over the last 10 years. The resulting VaR represents a company’s risk 

given that events during this historical time period are as equally likely to occur over the next year as 

they were over any one of the previous 10 years. 
 
Should we assume that Cargo has sufficient capital if its nominal capital exceeds its economic 

capital? To answer this, we would have to ask ourselves if the financial and insurance markets 
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might experience an event during the next year that was without precedent in the last 10 years. If so, 

we would want to include a scenario that reflected the potential for that event; be it a market 

movement like that of October of 1987, the Asian Crisis of 1997, or the equity market crash of 2001. 

This is why we create scenario analysis and stress-tests. This is also why companies’ nominal 

capital will generally exceed, by some significant margin, their economic capital requirements as 

measured within an ERM context. The drafters of risk-based capital for such regulatory initiatives 

as Basel II and Solvency II have debated and openly speculated as to which multiplier of the 99% 

VaR economic capital should be imposed on the insurance and the banking industries to account for 

this limitation. Since this risk parameter is unknowable, risk managers often prefer to implement 

scenario analysis and stress testing to arrive at their best estimate of required capital. For this 

exercise on Cargo, we are not including calculating the capital requirements for operational or 

catastrophe risk requirements, only that risk resulting from steady-state conditions and that risk 

resulting from various scenarios and market events. 
 
4.5. Cargo’s Risk 
In Table 6 below, we display the results of Cargo’s risks by category and scenario. Risks are 
displayed in dollars (millions). 

Table 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To be able to make any assessments about the company’s capital adequacy, we need to examine the 

company’s expected year end surplus in comparison to its required level of capital at the 99% 

confidence level. We can observe this in Table 7 below. 
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 Base 
Case 

Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Reserve Risk 505 505 505 505 505 505 
Underwriting Risk 132 161 132 132 161 434 
ALM (Interest) Risk 236 236 220 236 220 189 
Equity Risk 108 108 108 93 93 93 
Forex Risk 5 5 5 5 5 5 
Credit Risk 107 107 107 133 133 133 
Total 1,093 1,121 1,076 1,103 1,115 1,359 
Diversification 
Benefits 

 
495 

 
520 

 
465 

 
506 

 
503 

 
545 

Required Economic 
Capital 

 
598 

 
602 

 
611 

 
598 

 
613 

 
813 



Table 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7 reveals the impact of each scenario to several critical measures of economic capital and 

income. For the most part, it appears that Cargo has enough economic capital to sustain it through 

all of the scenarios although Scenario 5 has a serious impact. Table 7 includes some entries that 

have not yet been defined: 
 
Expected Year End Surplus: This represents the amount of surplus that ERM predicts that Cargo will 

have at the end of the year and includes adjustments that result from: retained earnings (pre tax), 

capital gains/losses, unrealized gains/losses, and changes to reserves. 
 
Expected Year End Income: This represents the earnings that ERM predicts Cargo will be able to 

recognize at year end and includes adjustments resulting from: capital gains/losses, unrealized 

gains/losses, and changes to reserves. Note: The definition of income in the ERM framework is 

equivalent to that of net worth (i.e., impact to surplus), not distributable earnings. 
 
Probability of losing 10% or more from beginning-of-year/end-of-year surplus: This represents the 

probability that the company will lose at least 10% or more of its capital from its beginning-of- 

year/end-of-year surplus level. This is also known as the company’s downside risk. ERM assesses 

this probability for any percent of the firm’s surplus. 
 
Key insights from ERM analysis of Cargo: 
 

• Base Case: As presented, Cargo has nearly four times the economic capital that it requires. 
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 Base 
Case 

Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Expected Year End Surplus 2,284 2,264 2,166 2,238 2,098 1,493 
Expected Year End Income 637 616 462.5 521 394 -312 
Economic Capital at 99% Level 598 602 611 598 613 813 
Prob. of losing 10% or more 
from beginning of year surplus 

 
0.1% 

 
0.2% 

 
1.4% 

 
0.3% 

 
2.2% 

 
68.5% 

Prob. of losing 10% or more 
from expected end of year 
surplus 

 
 

17.4% 

 
 

18.1% 

 
 

19.8% 

 
 

17.9% 

 
 

20.4% 

 
 

30.8% 
Prob. of default 0% 0% 0% 0% 0% 0% 
Operating ratio from beginning 
of year surplus 

 
1.26 

 
1.26 

 
1.23 

 
1.26 

 
1.23 

 
1.18 



• Scenario 1: There is no increase in reserve risk as new premium rate declines will not impact 

reserve risk. Underwriting risk does increase as was expected given that premium rates in 

Cargo’s biggest line have decreased by 5% with an increase in the premium rate volatility to 

10%. All other risks are unaffected. 

• Scenario 2: The value of the fixed income portfolio declined due to the rise in interest rates. 

At the same time, the present value of its liabilities also declined reducing total ALM risk. 

Overall risk would have declined in Scenario 2 from that of the Base Case except that this 

change in Cargo’s portfolio structure reduced its diversification benefit leaving the required 

economic capital almost unchanged. 

• Scenario 3: As expected, the equity risk declined owing to the lower base rate return. The 

credit risk increased owing to the integral role that equity value contributes to solvency in a 

contingent claims valuation framework. 

• Scenario 4: Company loses approximately 38% of its income from that of the Base Case due 

to all three effects, but due to diversification, this combined risk scenario contributes little 

risk. 

• Scenario 5: Due to the magnitude of the loss in income from the severity of these events, we 

now observe negative income and a significant increase in company risk. Probability of 

losing 20% of the initial surplus is now 45.4%. 
 
What can the CEO of Cargo say to his board of directors about their company’s overall risk and 

financial performance based on this analysis? 
 

• That the company appears to be well capitalized in the base case and first four economic 

scenarios. 

• That in Scenario 5, the company would have to increase economic capital by about 36% to 

maintain the same level of downside risk as exists in the Base Case today. 

• Impact to income: 

- In Scenario 2, income is reduced 27% 

- In Scenario 3, income is reduced 18% from the Base Case due to a lowering of equity 

market returns and an increase in the discount rate that lowers the present value of the 

fixed income portfolio 

- In Scenario 4, income is off 38% due to the combined effect of Scenarios 1, 2, and 3. 
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- In Scenario 5, income is a negative $312 million. 

• Pre-tax RAROC for company appears to be adequate in all but Scenario 5. 

• The company’s earnings appear to be quite sensitive to yield curve shifts. Cargo may want 

to explore hedging opportunities and/or better ALM matching. 
 
What the CEO actually says to his board will depend, in large part, on how large a probability his 

advisors will assign to Scenarios 4 and 5 since this is where both economic capital and earnings get 

hit the hardest. The CEO will have to review how significant an event it would be for Cargo to lose 

20% of its capital since the probability of this occurrence increases to 45.4% in scenario 5. To be 

clear, the analysis is not saying that there is a 45.4% chance that Cargo will lose 20% or more of its 

capital, it is saying that this is only likely in the event of Scenario 5—and Scenario 5 may only have 

a 5% chance of occurring. There is no way of attributing the likelihood of a market “event” unless 

that event is contained in the model’s data history. Assigning weights to low probability scenarios is 

beyond the scope of what an ERM system can provide if the events are not in the model’s historical 

parameters. However, an integrated ERM can provide the user with a good assessment of the likely 

impact if the event does occur. 
 
4.6. Why are Scenarios and Stress Testing Important? 

Stress testing is a process of identifying, often through Monte Carlo Simulations, the response of an 

asset or liability portfolio (or both), to a variety of types of financial distress. The purpose of the 

stress test is to evaluate how the organization whose portfolio is being tested would fare under a 

specific set of adverse market conditions. In the absence of being able to identify how many times 

99% VaR capital should be imposed, risk managers will often identify specific market crises as 

being the events for which they want their institution to be prepared. These events, and their 

demonstrated ability to survive them without impairment, become a part of what they represent to 

the world as their statement of solidity. For this reason, ERM has been provided with a robust 

scenario generating capability. As a result, the ERM user can use an ERM system in two ways: 1) to 

observe their economic capital requirements at a desired level of VaR confidence assuming the 

business and economic climate does not deviate substantially from steady-state; or 2) the user can 

stress test market events that may have low expectations of occurrence—perhaps as low as once in 

50 years for financial risk or once in 500 years for catastrophe risk. Many companies have found it 
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useful to think in these terms rather than establishing a multiple of steady-state capital as the 

desirable level of capital to hold. 
 
Cargo’s management team will want to run a large variety of single and stacked (simultaneous) 

scenarios that reflect their judgment about potential market events. They will then want to position 

their company to be able to withstand a level of risk that is in concert with their and the board’s 

collective judgment about acceptable risk. To be able to do this, Cargo will need an integrated ERM 

that is fast enough to be able to provide results in real time and simple enough that complex risk 

interactions are revealed in easy-to-digest output. Cargo’s management may want to increase 

capitalization by about 36% if it wants to maintain the same downside risk probabilities in Scenario 

5, as it currently enjoys in the Base Case. The countervailing judgment would have to be: how 

disadvantageous would this level of capitalization be to the company’s current market 

competitiveness? This is the balance that management must strike. 
 
4.7. Capital Allocation and RAROC at Cargo 

ERM allocates economic and stand-alone capital allocations to Cargo’s regulatory operating 

segments. Several lines require negative capital due to the diversification effect. Nominal capital 

has been allocated in proportion to that of Economic Capital and overhead has been allocated to each 

LOB in proportion to its premium volume (since specific overhead allocations are not available to 

the authors). RAROC for individual lines has been calculated based on stand-alone risk. Most of 

the individual segments appear to be making adequate RAROC values. 

 
 

Table 8. 
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Segment 

  
Standalone 

Risk 

Economic 
Capital 

(Allocated Risk) 

Company 
Capital 

Allocated 

 
 

Income 

 
 
RAROC 

Investment  469,976 219,334 838,735 169,829 36% 

A. Homeowners/Farmowners Old 26,012 -7,153 -27,354 2,573  
New 10,551 -1,230 -4,702 43,393  

Total 31,938 -8,383 -32,056 45,966 144% 
B. Private Passenger Auto 
Liability/Medical 

Old 37,987 20,942 80,083 2,409  
New 10,816 5,269 20,148 -7,271  

Total 47,592 26,211 100,231 -4,862 -10% 
C. Commercial Auto/Truck 
Liability/Medical 

Old 43,694 7,465 28,545 4,336  

New 18,712 1,355 5,180 -1,459  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.8. Segment Level RAROC 

At this level of focus we are better able to make certain distinctions. Cargo considers that its 

premiere segment is “Specialty.” This may be true in terms of market share at acceptable rates, yet it 

makes a superior RAROC on both commercial and personal lines. Yet, we also see that commercial 

and personal lines together only comprise about 7.5% of the entire company’s economic capital 

compared to 56% for that of Specialty. 
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Total 

 
58,940 

 
8,819 

 
33,725 

 
2,877 

 
5% 

D. Workers' Compensation Old 35,817 -17,208 -65,804 15,342  
New 3,691 -1,225 -4,684 18,173  
Total 37,620 -18,433 -70,488 33,515 89% 

E. Commercial Multiple Peril Old 80,984 35,007 133,867 12,778  
New 26,321 1,809 6,918 66,052  
Total 100,185 36,816 140,785 78,830 79% 

F1. Medical Malpractice -
Occurrence 

Old 11,866 3,514 13,438 2,396  
New 3,292 -199 -761 25,550  

Total 13,413 3,316 12,678 27,945 208% 
F2. Medical Malpractice -
Claims-Made 

Old 211,080 132,431 506,419 6,166  
New 39,511 11,566 44,228 -22,862  

Total 228,840 143,997 550,646 -16,696 -7% 

G. Special Liability Old 16,186 -4,481 -17,134 1,999  
New 9,012 -305 -1,167 15,072  

Total 18,415 -4,786 -18,301 17,071 93% 
H1. Other Liability -
Occurrence 

Old 146,388 85,918 328,550 20,586  
New 45,623 19,676 75,240 52,331  

Total 182,756 105,593 403,789 72,917 40% 

H2. Other Liability - Claims- 
Made 

Old 264,846 64,052 244,933 9,961  

New 37,151 2,709 10,357 -5,413  
Total 285,481 66,760 255,291 4,548 2% 

R1. Products Liability -
Occurrence 

Old 40,745 4,271 16,334 2,728  

New 258.5 60 229 17,727  

Total 40,752 4,331 16,562 20,454 50% 

2yr. Combined Business Old 87,989 12,746 48,742 1,911  
New 109,456 1,002 3,831 182,240  
Total 127,086 13,748 52,572 184,151 145% 

Total Total 597,322 597,322 2,284,168 636,542 106.6% 



Table 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.9. Final Conclusions on the Analysis 

The predicate of this analysis was to determine: 
 

1. Cargo’s VaR at the 99% confidence level 

2. How much risk is contributed by the five categories of risk 

3. How this capital needs to be allocated to Cargo’s different business activities 

4. The company’s downside risk 

5. The impact to the company of various economic and stress scenarios 
 
We further pointed out that we did not have access to certain key types of information that would 

allow us to capture Cargo’s operational and catastrophe risk. As a result, we limited the scope of our 

investigation to Cargo’s economic capital requirements exclusive of these two risks. We further 

pointed out that the most critical part of our investigation was to examine: 
 
How economic capital is impacted within an integrated framework, from a base case expectation 

to that of various stress-test levels. 
 
We believe that we accomplished this objective. We learned that Cargo’s surplus appears to be well 

structured against all but the most severe of the scenarios that we tested and that it appears to have 

more than sufficient capital in steady-state. From this foundation, it would be a relatively simple 

task to aggregate Cargo’s catastrophe risk with the rest of its risk categories (except that of operating 

risk) to arrive at the total economic capital required. The required operational risk capital will be the 
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Segment 

  
Standalone 

Risk 

Economic 
Capital 

(Allocated Risk) 

Company 
Capital 

Allocated 

 
 

Income 

 
 
RAROC 

Investment  469,976 219,334 838,735 169,829 36% 

Personal Lines Old 31,839 13,789 52,729 4,982  
New 14,238 4,039 15,446 36,123  
Total 42,344 17,828 68,175 41,104 97% 

Commercial Lines Old 121,023 25,264 96,608 32,456  
New 39,928 1,939 7,414 82,766  
Total 154,211 27,202 104,022 115,221 75% 

Specialty Old 470,302 298,451 1,141,280 45,744  
New 130,420 34,507 131,956 264,644  
Total 506,674 332,958 1,273,237 310,388 61% 

Total Total 597,322 597,322 2,284,168 636,542 106.6% 



difference between the firm’s nominal capital and the combination of its economic and catastrophe 

risk capital. To assess if this level of operational risk capital is appropriate, we would want to 

benchmark Cargo with a peer group of companies taking the same integrated risk measurements for 

each of them as we have for Cargo. This task can be accomplished in the Predyct ERM. 
 
5. Conclusion 
Historically, leading financial institutions developed their own risk systems. Smaller companies 

generally had none. Today, an increasing number of companies outsource risk technology 

development to leverage the work that has already been put into developing standard risk analytics 

and to avoid costly mistakes. Choosing the right risk management system is an important 

investment decision with long-term implications. Risk managers should be clear about what they are 

looking for in a risk application, taking into consideration both current and projected business needs. 
 
This document provides a brief overview of the methodology currently used by Predyct Analytic’s in 

our risk management applications. The methodology and algorithms used by ERM have been 

developed to be consistent with the best practices accepted by leading financial institutions. The 

models, assumptions, and techniques described in this document lay a solid methodological 

foundation for risk measurement in the insurance industry. 
 
Risk management is not a precise science; there are a variety of methods and algorithms that could 

provide a good risk solution. Innovation, new business experience, or a change in regulations can 

encourage risk managers to revise and update risk methodologies. This implemented system 

possesses a great degree of flexibility: virtually every algorithm in ERM can be updated or replaced 

with a new one, as long as all modifications agree with the base rules utilized by the integrated ERM 

framework. 
 
While every risk measurement system will require customization to meet specific user specifications, 

Predyct ERM includes all of the core capabilities that are required to meet Best Practice risk 

management and reporting requirements. But ERM is more than a compliance solution; it is also a 

business tool that allows users to quickly evaluate the effectiveness and profitability of each business 

strategy they may want to implement. Each business strategy can be assessed against a robust set of 

economic scenarios and stress tests, and the results are displayed in easy-to-digest metrics. 
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Appendix A: Quasi Monte Carlo Simulation and Lattice Rules 

A.1. Monte Carlo and Quasi Monte Carlo 

The purpose of most stochastic simulations is to estimate the mathematical expectation of some cost 

function, in a wide sense. Since randomness in simulations is almost always generated from a 

sequence of i.i.d U (0,1) (independent and identically distributed uniforms over the interval [0,1) ) 

random variables, the mathematical expectation that we want to estimate can be expressed as the 

integral of a real-valued function f over the t-dimensional unit hypercube [0,1)t , 
 

μ = f (u) du (A.1.1) 

 
For small t, numerical integration methods such as the Simpson rule, Gauss rule, etc., are available to 

approximate the integral (A.1.1). These methods quickly become impractical, however, as t 

increases beyond 4 or 5. For larger t, the usual estimator of μ is the average value of f over some 

point set P = {u0 ,�,un-1} ⊂ [0,1)t , 

 
f (ui ) . (A.1.2) 
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[0,1)t ∫ 

n 

1 
n 

n-1 

∑ 
i=0 

Qn = 



In the standard Monte Carlo (MC) simulation method, P is a set of n i.i.d. uniform random points 

over [0,1)t . Then, Qn is an unbiased estimator of μ with variance σ n . When the variance is 

finite, the estimator Qn converges to μ with the convergence rate O(1 
 
The Quasi-Monte Carlo (QMC) method constructs the point set P more evenly distributed over 

[0,1)t than typical random points, in order to improve over the O(1 n ) convergence rate. The 

precise meaning of “more evenly” depends on how we measure uniformity, and this is usually done 

by defining a measure of discrepancy between the discrete distribution determined by the points of 

P and the uniform distribution over [0,1)t . A low-discrepancy point set P is a point set for which 

the discrepancy measure is significantly smaller than that of a typical random point set. 
 
The two main families of construction methods for low-discrepancy point sets in practice are the 

digital nets and the integration lattices. The former usually aim at constructing so-called (t, m, s) - 

nets. A low-discrepancy sequence is an infinite sequence of points P∞ = {u0,u1,�} such that for all 

n (or for an infinite increasing sequence of values of n, e.g., each power of 2), the point set 

P = {u0 ,�,un-1} has low discrepancy. The number of points does not need to be set in advance, 

before running a simulation: one can always add additional points if the convergence is insufficient. 

Well known examples of (t, m, s) -nets are sequences constructed by Halton, Sobol’, Faure, and 

Niederreiter. Unfortunately, the quality of these sequences deteriorates with the dimensionality t, 

while the complexity of their construction significantly increases; there are no reported examples of 

(t, m, s) -nets applied to problems with more than 400 dimensions. 
 
In contrast to (t, m, s) -nets, the integration lattices are generally not extendable: they require the 

number of points n be set in advance (although, a construction of extendable integration lattices has 

recently been reported in the literature). If the desired convergence error has not been achieved with 

a given n, one needs to run the simulation all over again with a greater n. 

construction rules, as explained below, are very simple, and the integration lattices behave better 

than the digital nets in high dimensional problems. 
 
Both the digital nets and the integration lattices estimators converge at the theoretical (worst case) 

rate of O(n-1(ln n)t ) . This convergence rate is certainly better than the MC rate O(n-1 2) 

asymptotically, but this superiority is practical only for small t. For example, for t = 10 already, to 

have n-1(ln n)t < n-1 2 one needs n  1039 . 
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At the same time, the 

Fortunately, the QMC convergence rate in practice is 



much better than what is suggested by the theoretical upper bound of O(n-1(ln n)t ) . 

phenomenon is not entirely understood, one explanation comes from the concept of effective 

dimension of f. This concept is very similar to the effective dimensionality of the correlation matrix 

as obtained through the Principal Component Analysis. In applications, in particular in financial 

problems, the effective dimensionality teff is much less than the nominal dimensionality t, which 

results in a much faster convergence rate O(n-1(ln n)t )  O(n-1(ln n)t ) . 
 
A.2. Korobov Lattice Rule 

The integration lattice in the real space �t is a set of vectors 
 

⎧ ⎫ 

⎩ ⎭ 
 
where v1,�, vt are linearly independent vectors in �t which form a basis of the lattice, and z are 

integer. A lattice rule (of integration) is a rule of the form (A.1.2) and for which the node set 

P = {u0 ,�,un-1} is the intersection of an integration lattice with the unit hypercube: P = Lt ∩[0,1)t . 

In general, a node set in �t requires t basis vectors, but some lattices can be generated by a reduced 

set of r basis vectors, with r < t . One can always write 
 

P = {(( j1 n1)v1 + + ( jr nr )vr ) mod1: 0 ≤ ji < ni for i =1,�, r}, (A.2.2) 

 
where the reduction modulo 1 is performed coordinate-wise, the vi ’s are linearly independent 

generating vectors, and n = n1 ⋅⋅ ⋅  nr . 

lattice rule. For reasons to be explained later, we restrict out attention to r = 1. For a rule of rank 1, 

we have 
 

P = {( j n)v mod1: 0 ≤ j < n} (A.2.3) 

 
for some vector v. A simple but important special case is a lattice rule of rank 1 with 

v = (1, a,�, at-1) , which is a Korobov rule [18]. 
 
Using a lattice does not guarantee that the points are well-distributed in the unit hypercube. As the 

very least, we should require that the projection of the lattice Lt over any d-dimensional subspace of 

�t determined by a subset of coordinates {i1,�, id} ⊆ {1,�, t} have the same density as Lt , i.e., the 

corresponding projection of P must have n distinct points—as many as P itself. A Korobov rule 

 
59

While this 

eff 

⎨v ∑ j j j 
j=1 

(A.2.1) 
t 

Lt = = z v , each z ∈ Z⎬ 
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n 

The smallest r for which this holds is called the rank of the 

n 

n n 



satisfies this requirement if gcd(a, n) =1, e.g., if n is prime and 1 ≤ a < n , or if n is a power of 2 and 

a is odd. Even with this condition in place, both n and a have to be chosen carefully in order to 

achieve good uniformity in P . To minimize the integration error, that is, to ensure that Qn in 

(A.1.2) is a good estimator of the integral (A.1.1), the point set P must display good uniformity not 

only in �t but in any subspace of �t . The importance of the last requirement becomes clear if one 

recalls that in practice the integral (A.1.1) is determined by a few important dimensions that 

constitute the effective dimensionality of the problem. The search for the optimal values of n and a 

is computationally intensive; some of the optimal values are provided in Table 10. 

 
 

Table 10: Best a’s for Certain Values of n 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Computer experiments show that rules of higher rank do not exhibit sufficiently uniform lower- 

dimensional projections, and therefore provide no advantage over the best rank-1 rules. 

applications, it is unlikely that more complicated rules can do better than the simple Korobov rules 

with the values of n and a selected from Table 10. 
 
A.3. Implementation in ERM 

For any rule of rank 1, P can be constructed in a straightforward way by staring with u = 0 and 

performing n -1 iterations of the form u = (u + v) mod1, as the formula (A.2.3) suggests. This 

requires O tn) additions modulo 1. If the rule is in Korobov form, P is in fact equal to the set of all 

vectors of t successive output values produced by the linear congruential generator (LCG) defined by 

the recurrence 
 

xi = (axi-1) mod n, zi = xi n , (A.3.1) 
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n 

n 

In 

n 

( n 

n a 
1,021 76 
2,039 1,487 
4,093 1,516 
8,191 5,130 

16,381 4,026 
32,749 14,251 
65,521 8,950 

131,071 28,823 



from all possible initial states x0 . That is, ui = (z0 ,�, zt-1) : x0 = i, 0 ≤ i < n . By itself, the formula 

(A.3.1) appears to offer no advantage over (A.2.3), since it requires O tn) multiplications modulo 1 

and offers no random access to any particular dimension (for any given n, the components of ui are 

calculated recursively). QMC implemented in this manner would result in an inefficient, slow 

calculation. 
 
In fact, for some particular values of n and a Korobov rules can be implemented in a much more 

efficient manner. If n is a prime number and a is a primitive element modulo n (i.e., ν = n -1 is the 

smallest positive ν for which aν mod n =1), then the corresponding LCG has the maximal period 

length of n -1, and the point set P can be constructed as follows: Start with x1 =1 and generate the 

sequence z1, z2 ,�, z via (A.3.1). Along the way, enumerate u1,�,un-1 , the overlapping vectors 

of successive values, so that ui = (zi , zi+1,�, zi+t-1) . 

O(n + t) multiplications by a, modulo n, plus some overhead to shift the vector components at each 

iteration, instead of O tn) additions in (A.2.3) or O tn) multiplications in (A.3.1). The values of n 

and a contained in Table 10 allow this efficient construction in ERM. 
 
Appendix B: Correlation Matrices, Principal Component 

Analysis and Random Matrix Theory 
An important aspect of risk management is the estimation of the correlations between the price 

movements of different assets and liabilities. The probability of large losses for a portfolio is often 

dominated by correlated moves of its different constituents. The study of correlation (or covariance) 

matrices has a long history in finance, and is one of the cornerstones of Markowitz’s theory of 

optimal portfolios. 
 
B.1. Correlation Matrices and Principal Component Analysis 

In order to measure these correlations, one often defines the correlation matrix C between the M 

instruments in the portfolio. We will assume, without loss of generality, that the instrument returns 

ρi = δ xi xi have zero means and are rescaled with unit volatility. The matrix elements Cij of C are 

obtained as 
 

Cij = ρiρi (B.1.1) 
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n 

n+t-2 

Then add the vector u0 = 0 . This requires 

( ( 



Since matrix C is symmetric, the eigenvalues are real numbers. 

positive, otherwise it would be possible to find a certain portfolio of the instruments with a negative 

variance. Following the exposition in [26], let va be the normalized eigenvector corresponding to 

eigenvalue λa , with a = 1,�, M . By definition, Cva = λava . Let us consider a portfolio such that 

the dollar amount of instrument i is va,i , the ith component of vector va . The variance of the return 

of such a portfolio is 
 

M 

= va,iva, jCi, j ≡ va ⋅ Cva = λa . 
i , j =1 

 
We see that λa is the variance of the portfolio constructed from the weights va ,i . Furthermore, using 

the fact that different eigenvectors are orthogonal, it is easy to see that the correlation of the returns 

of two portfolios constructed from two different eigenvectors is zero: 

 
= vb ⋅ Cva = 0 (b ≠ a) . (B.1.3) 

 
 
Thus, we have obtained a set of uncorrelated random returns ea , which are the returns of the 

portfolios constructed from the weights va,i : 
 

M 

a,i 
i=1 

 
Conversely, we can think of the original returns ρi as a linear combination of the uncorrelated 

factors E : 
 

M 

(B.1.5) 
 
 

from the original vectors to the 

eigenvectors is orthogonal. This decomposition is called Principal Component Analysis (PCA): the 

correlated fluctuations of a set of random variables are decomposed in terms of the fluctuations of 

underlying uncorrelated factors. In the case of financial returns, the principal components E often 

have an economic interpretation in terms of financial sectors. 
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These numbers also must be 

∑v ∑v ρ
 ⎠ 

⎛ 

M 

⎜ a ,i ⎟ ⎜ 

2 

∑v ⎞ 

= λa , eaeb = 0 (a ≠ b) . (B.1.4) ea = ρi; ∑v 2 ea 

⎝ i=1 ⎠ ⎝ j=1 
⎟ 

∑ 2 σ a = 

⎞ ⎛ ⎞ ⎛ M 

ρi b, j j 

ρi ⎜ a ,i ⎟ 
⎝ i=1 ⎠ 

M 

(B.1.2) 

a 

ρi = ea . 
a=1 

 
The last equality holds because the transformation matrix va,i 

a,i ∑ v 

a 



As a practical application, Eq. (B.1.5) allows us to simulate normal random variables with any given 

correlation matrix through a set of uncorrelated variables. 
 
B.2. Empirical Correlation Matrices 

The correlation matrix C is estimated (calibrated) by constructing an empirical correlation matrix Ĉ 

from the historical time series of returns ρi (t) , where i labels the instrument and t the time, 

t = 1,�, N : 
 

N 

∑ ρ (t) 
t=1 

 
A reliable calibration of a correlation matrix is difficult: if one considers M instruments, the 

correlation matrix contains M (M -1) 2 entries, a problem of quadratic complexity. These entries 

must be determined from M time series of length N; if N is not very large compared to M, we should 

expect that the structure of the matrix is dominated by “measurement noise”. From this point of 

view, it is illuminating to compare the properties of an empirical correlation matrix Ĉ to a purely 

random matrix as one could obtain from a finite series of strictly uncorrelated variables. Deviations 

from the random matrix case will then indicate the presence of true correlations. 
 
Analysis of such random matrices has its origins in nuclear and condensed matter physics. In the 

limit of very large matrices, the theory of random matrices [24] allows one to compute the density of 

eigenvalues of Ĉ , 
 

(λmax - λ)(λ - λmin ) 
λ 

λmin = 1+1 Q ± 2 1/ Q , 

 
where Q = N M . 
 
The most important feature predicted by (B.2.2) is that the eigenvalues of a purely random 

correlation matrix are always spread over a finite interval [λmin ,λmax ] around 1; eigenvalues vanish 

above a certain upper edge λmax . 
 
In PCA analysis of an empirical correlation matrix calculated from M financial time series of finite 

duration, one will observe a range of eigenvalues: from very small λ  1 to large λ  M (the 
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1 
N 

(B.2.1) (t)ρi i 

Q 
2π 

Ĉi, j = 

(B.2.2) 
ρ (λ) = , λ ∈[λmin ,λmax ], 

max 



eigenvalues always add up to M, the size of Ĉ : λ1 + λ2 +�+ λM = M ). It is clear that the very small 

eigenvalues are a part of “noise” and therefore the corresponding factors should be dropped from the 

analysis. The crucial issue that remains unresolved in statistics is how to determine the number of 

factors to keep—that is, how to distinguish “information” from noise. Although a number of “rules 

of thumb” have been put forward, none provided a clear quantitative criterion. The result (B.2.2) 

developed in physical science provides the needed rule: all eigenvalues below λmax belong to the 

“noise” band and should be dropped from PCA. 
 
It is often the case that a risk management system estimates an empirical correlation matrix and then 

employs it as is. As we see, a large part of an empirical correlation matrix must be considered as 

“noise”, and cannot be trusted for risk management [25]. 
 
Appendix C: “Stable” Simulation 
It is often said that stochastic simulation is incompatible with scenario analysis, in particular with 

sensitivity testing. In Feldblum’s words ([31], p. 156): if a simulation model is rerun with a different 

set of assumptions, the results will change, “but one does not know how much of the change stems 

from the revised assumption, and how much of the change stems from randomness—from the 

particular realizations produced by the random number generator in each run.” This Appendix 

describes how ERM overcomes this problem and makes scenario analysis completely compatible 

with stochastic simulation. 
 
Random number generators produce very long streams of i.i.d. U (0,1) random numbers; the whole 

stream depends on the numeric value of the seed. A different seed will produce a completely 

different stream, while the same seed will always produce exactly the same stream (that is why it is 

more precise to describe the numbers in the stream as “pseudo-random”). If the simulation were to 

use a single “instance” of the underlying random number generator, while the assumptions differed 

only in the numeric parameters, the solution to our problem would have been easy: we would simply 

need to seed the generator with the same seed for both sets of assumptions (seeding the generator is 

normally unavailable in a spreadsheet, yet trivial in a programming language). In each scenario, the 

output for both sets would be calculated against the same section of the stream of random numbers; 

the direction of the change and its average value would then be significant even if the change in each 

scenario were smaller than the variations between scenarios. Unfortunately, this naive scheme 
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completely breaks down whenever we add or remove any sources of risk (investment positions, lines 

of business, etc.) or simply change the order they are input into the model. Now, the two sets would 

use different sections of the random stream in each scenario; as a result, the variation between the 

scenarios could easily dominate the change from the revised assumption. 
 
The solution is to supply each source of risk (i.e., every random variable) with a random stream of its 

own, that is, with an independent instance of the random number generator. Of course, we cannot 

seed all those generators with the same number—the variables would then be perfectly correlated. 

The seed must uniquely depend on the risk. Naturally, each risk can be described in a unique way: 

this could be CUSIP identifier for investment positions or, say, some standard description of an 

insurance business line (like “Workers’ Compensation, Accident Year 2000”). ERM translates these 

unique textual descriptions into numeric seeds with help of a hash function. 
 
A hash function or hash algorithm is a function for examining the input data (usually text) of 

arbitrary length and producing a relatively short string of digits, an output hash value. The process 

of computing such a value is known as hashing. The process of hashing has the property that two 

different inputs are extremely unlikely to hash to the same hash value. If one runs a piece of 

information—this article for example—through a hash function, and then changes a single letter and 

runs the information through the function again, the result would be completely different. 
 
The randomness of each risk’s idiosyncratic contribution now comes from its own unique underlying 

stream of i.i.d. U (0,1) numbers. The correlation between risks comes from a shared set of risk 

factors (see Sections 3.2.1.2 and 3.2.1.5), these fixed factors are generated through Quasi Monte 

Carlo simulation in such a way that each factor always uses its unique dimension in the “lattice rule” 

(see Appendices A and B). This technique results in a reproducible and stable Monte Carlo 

simulation: one can rerun the simulation and be certain that the change stems from the revised 

assumption rather than the intrinsic randomness of a simulation. 
 
Appendix D: Risk Measures and Simulation Methods 
In this Appendix, we define VaR and explain its calculation using simulation techniques. However, 

in order to obtain a complete picture of risk, and introduce risk measures in the decision-making 

process, we need to use additional statistics reflecting the interaction of the different pieces (business 

units, portfolios) that lead to the total risk of the company, as well as potential changes in risk due to 
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changes in the composition of the company’s business. Marginal and Incremental VaR are related 

risk measures that can provide this information on the interaction of different pieces of a portfolio. 
 
D.1. VaR, Marginal VaR, and IVaR 

Value-at-Risk (VaR) is one of the most important and widely used statistics that measure the 

potential risk of economic losses. VaR answers the question: What is the minimum amount that the 

company can expect to lose with a certain probability over a given horizon? In mathematical terms, 

VaR corresponds to a percentile of the distribution of portfolio P&L. For a given time horizon, the 

100α% VaR, denoted VaR(α ) , is the size of loss that will be exceeded with probability (1-α ) . 

Suppose that the loss incurred by a portfolio during the specified period is given by the random 

variable L, having some (unknown) cumulative distribution function (cdf) F, so that 

Prob(L ≤ y) = F( y) . The portfolio’s 100α% VaR equals the αth population quantile of L, that is, 

VaR(α ) = F (α ) . 
 
The Marginal VaR of a position (business line, etc.) with respect to a portfolio (company) can be 

thought of as the amount of risk that the position is adding to the portfolio. In other words, Marginal 

VaR tells us how the VaR of our portfolio would change if we sold (ran off) or added a specific 

position. Marginal VaR can be formally defined as the difference between the VaR of the total 

portfolio and the VaR of the portfolio without the position. It can be easily shown that Marginal 

VaR is an increasing function of the correlation ρ between the position and the portfolio. When the 

VaR of the position is much smaller than the VaR of the portfolio, Marginal VaR will be positive 

when ρ > 0 , and negative when ρ < 0 . 
 
Marginal VaR can be used to compute the amount of risk added by an entire position to the total risk 

of the portfolio. It is an appropriate risk measure in the context of run-off and acquisition decisions. 

However, we are also interested in the potential effect that buying or selling a relatively small 

portion of a position would have on the overall risk. For example, in the process of rebalancing a 

portfolio, we often wish to decrease our holdings by a small amount rather than liquidate the entire 

position. Since Marginal VaR can only consider the effect of selling the whole position, it would be 

an inappropriate measure of risk contribution for this example. 
 
Incremental VaR (IVaR) is a statistic that provides information regarding the sensitivity of VaR to 

changes in the portfolio holdings. If we denote by IVaRi the Incremental VaR for the ith position in 
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the portfolio, and by θi the percentage change in size of that position, we can approximate the 

change in VaR by 
 

Δ VaR = IVaRi (D.1.1) 
i 

 
An important difference between IVaR and Marginal VaR is that the IVaRs of the positions add up 

to the total VaR of the portfolio: 
 

(D.1.2) 
i 

 
This additive property of IVaR has important applications in the allocation of risk to different units 

(sectors, countries), where the goal is to keep the sum of the risks equal to the total risk. 
 
For a practical calculation of IVaR, we need a more rigorous definition. Let wi be the amount of 

money invested in ith position. We define the Incremental VaR of position i as 

 
IVaRi = wi 

 
 
To verify the additive property of IVaR we need to note that VaR is a homogeneous function of 

order one of the total amount invested. This means that if we double the investments on each 

position, the VaR of the new portfolio will be twice as large. That is, 
 

VaR(tw1,tw2 ,�, twn) = t VaR(w1, w2 ,�, wn ). (D.1.4) 

 
Then, by Euler’s homogeneous function theorem we have that 
 

∂ VaR ≡ 
∂wi 

 
D.2. Simulation Methods and L-Estimators 

In the scenario-based simulation approach, VaR(α ) is estimated from a sample of simulated losses 

that is drawn from F. We denote this estimated value by VaR(α ) . 

ˆ The sample of portfolio losses provides an empirical approximation F to the true loss distribution F. 

Consider a set of n scenarios and suppose, for ease of exposition, that the likelihood of each scenario 
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i ∑θ 

i ∑IVaR = VaR 

∂ VaR . 
∂wi 

i ∑IVaR . 
i 

(D.1.3) 

∑ w 
i 

(D.1.5) i VaR = 



is 1 n . We denote the loss incurred in the kth scenario as Lk , and the kth order statistic of the 

sample as L(k ) , so that L(1) ≤ L(2) ≤� ≤ L(n) are the losses L1, L2 ,�, L sorted in the ascending order. 

A common way of defining the empirical cdf for the portfolio losses is 
 

y < L(1) 

L(k ) ≤ y < L(k +1) 

y ≥ L(n) 

 
A popular estimator of VaR(α ) is the sample quantile, i.e., the quantile of the empirical cdf: 
 

ˆ VaR(α ) = F (α ) = L(k ) for 
 
 
We might try to compute IVaR of a position as a numerical derivative of VaR using a set of 

scenarios and shifting the position by a small amount—in accord with formula (D.1.3). While in a 

“standard” simulation approach the simulation error would usually be too large to permit a stable 

estimate of IVaR, it is entirely possible within the “stable” framework described in Appendix C:. 

However, simulation approach allows a much more efficient method of computing IVaR. This 

method is based on the fact that we can write IVaR in terms of a conditional expectation. 
 
Let us assume that we have calculated the 95% VaR using Monte Carlo simulation with 1000 

scenarios. We decide to use the estimator (D.2.2), so that the 95%VaR corresponds to the 950th 

ordered P&L scenario. Note that VaR is the sum of the P&L for each position in the 950th scenario 
 

VaR(α ) = L(k ) = , (D.2.3) 
i 

 
where li(k ) is the P&L of the position i in the kth ordered scenario. If we increase our holdings in one 

of the positions by a small amount while keeping the rest constant, the resulting portfolio P&L will 

still be the 950th largest scenario and hence will still correspond to the 95% VaR. In other words, 

changing the weight of one position by a small amount will not change the order of the scenarios. 

Therefore, the change in VaR given a small change of size Δwi in position i is Δ VaR = Δli . For any 

given position, the P&L distribution is proportional to the size of the position, li = wil� , where l� is 

the P&L per one unit of money. Assuming that VaR is realized only in the 950th scenario we can 

write: 
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⎪1, 

-1 k -1 k < α ≤ . 
n n 

⎩ 

⎨k 

0, 
⎪ ˆ F ( y) = n , 

⎧ 

n 

(D.2.1) 

(D.2.2) 

(k ) 
i ∑ l 

i i 



∂ VaR ΔVaR 
wi � wi 

∂wi Δwi 
 

= wi
 i = li 

 
 
Thus, starting form the VaR estimator, we arrive at a very simple estimator for IVaR: 
 

IVaR (α ) = li(k ) (D.2.5) 

 
Formula (D.2.5) suggests that we can interpret Incremental VaR for a position as the position P&L 

in the scenario corresponding to the portfolio VaR estimate. Since VaR is in general realized in 

more than one scenario, we need to average over all the scenarios where the value of the portfolio is 

equal to VaR. While formula (D.2.5) applies to the estimators of the form (D.2.2) in the simulation 

framework, one can derive the following exact formula for IVaR: 

 
VaR ⎥ (D.2.6) 

 
 
In other words, IVaRi is the expected P&L of position i given that the total P&L of the portfolio is 

equal to VaR. 
 
While the closely related estimators of VaR and IVaR of the form (D.2.2) and (D.2.5) are rather 

simple and convenient, the two have a significant drawback. Since these estimators depend on only 

one scenario, both computed VaR and IVaR (especially the latter) can be sensitive to the choice of 

portfolio scenario. The reason is intuitively clear: we discard the valuable information contained in 

the adjacent scenarios. This insight motivates us to search for better estimators in the form of linear 

combinations of order statistics. Such robust estimators are known as L-estimators. Within Predyct 

ERM, VaR and IVaR are estimated as 
 

n 

VaR(α ) = (α )L(k ), 
(D.2.7) 

IVaR (α ) = (α )li(k ), 
k =1 

 
with the binomial weights 
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i 
i ⎦ 

IVaRi = E i ⎢l 
⎣ 

(D.2.4) 
Δwi ⋅ l� 

Δwi 

∑ l = ⎤ ⎡ 

i 

Δli = wi 
Δwi 

k ,n 

k ,n ∑ v 
k =1 

n 

∑ v 
i 



vk ,n (α ) = α (1-α )n-k , 
 
 
The L-estimators (D.2.7) make use of all information available in the simulation sample. It can be 

shown [29], [30], that these robust estimators provide a much higher rate of convergence compared 

to (D.2.2) and especially (D.2.5). 
 
D.3. VaR, Importance Sampling, and Catastrophe Losses 

VaR metrics depend on behavior of the tails of risk distributions. For simulated distributions, the tail 

measures always present a problem. Whether we measure VaR at, say, 99% level as a 99% 

percentile of the simulated distribution or use a more robust L-estimator (see above), the estimate 

still depends on just about 1% of all scenarios. If we had a thousand simulated scenarios, the 99% 

VaR would depend on about 10 scenarios with the highest losses; the variance of the estimate would 

be quite significant. The 99.9% VaR would be determined by just one scenario with the highest 

losses; the variance of such an estimate would be impossible to calculate. In order to calculate the 

tail measures without a prohibitive increase in the number of simulated scenarios, we need a 

“targeted” simulation that produces many more tail scenarios than suggested by their probability. 

We also need a way to calculate the statistics against such “targeted” simulation. This is 

accomplished with a technique known as importance sampling [28]. 
 
The idea is to draw scenarios from the tail of the P&L distribution with a higher frequency than from 

the body; when calculating risk measures, the higher frequency is compensated by the lower weight 

of such scenarios. The resulting weighted estimates will have narrower intervals than the result of a 

straightforward simulation. In general, importance sampling can be applied to any integral of the 

form (A.1.1), which includes the moments of the random distribution (standard distribution is not of 

this form, but can be easily calculated from the mean and the second moment). 
 
Importance sampling critically depends on our prior knowledge of the P&L distribution. Of course, 

if this knowledge were perfect, there would be no need to run any simulation. What is important is 

to be able to predict in advance which simulation scenarios will likely end up in the tail. Sometimes, 

as in the case of mixing regular and catastrophe insurance losses, this task becomes relatively simple. 
 
For the sake of exposition, let us assume that an insurance company has enough internal data for 

their Homeowners’ policies to model losses due to events that occur at least once in 10 years. The 
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k ,n (D.2.8) ⎜ 

k -1 n 
k -1⎟ 

n 

∑ v (α ) =1. 
k =1 

⎛ -1 ⎞ 



company would like to compliment their loss simulation based on the internal data with a 

catastrophe loss distribution (itself a result of a simulation) provided by a catastrophe modeling 

vendor. The catastrophe distribution covers only events that occur no more often than once in 10 

years. In a straightforward simulation, for each 10th scenario, a loss would be drawn from the 

catastrophe distribution and added to the regular loss. In 1,000 simulations, only 100 would have a 

catastrophic loss. Out of those, about 10 would be rare events—once in 100 years. These 10 large 

losses would dominate the overall losses in their scenarios; as a result, the 99% VaR would depend 

on just 10 scenarios. To apply importance sampling to this situation, one could generate 1000 

scenarios with regular losses, and then add a randomly drawn catastrophe loss to each of them. Now 

we have a set of regular scenarios and a set of catastrophe scenarios, 1000 scenarios each, with the 
ˆ ˆ empirical cumulative distribution functions Fr and Fcat (see Eq. (D.2.1)). The weighted mix of these 

ˆ ˆ ˆ two functions, F = 0.9Fr + 0.1Fcat can serve as an estimator of the overall cdf. It is easy to see that 

the 99% VaR calculated with this function will use about 100 catastrophic scenarios, a tenfold 

increase in the amount of information. The risk measures calculated in this way will have a 

significantly reduced variance compared with their counterparts estimated from a straightforward 

simulation. 
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