
Insurance Liabilities 
 
Introduction 

 
Insurance companies assume risks of other entities (individuals and companies) in return for 

payments of premium.   While premium is normally paid upfront, before the inception of an 

insurance contract, loss payments by the insurance company will not take place until after an insured 

event occurs and is reported. Even when the insured event is reported, the exact magnitude of the 

loss payments due to the insured (“ultimate loss”) may not be known for quite some time.  The 

determination of this amount (known as “adjustment process”) may be lengthy and involve 

litigation. As a result, the loss payments attributable to any given policy may occur over a period of 

time even after the coverage period ends, potentially in the course of many years (e.g., over a 

lifetime of an insured individual)—a process known as “loss development.”  Thus, loss payments 

become a long-term liability for the insurance company and give rise to uncertain future cash flows. 
 

Insurance companies are required to establish reserves, i.e., money set aside, for the future loss 

payments. The reserves consist of case reserves, as set by the case adjusters, bulk reserves—these 

judgmental adjustments to case reserves are established by actuaries on an aggregate basis, and 

Incurred But Not Reported (IBNR) reserves—the latter being an actuarial allowance for yet 

unknown events. The sum of already paid losses and reserves for future payments is referred to as 

incurred losses. 
 

The insurance risk modeling in ERM requires analysis and simulation of cash flows stemming from 

claim payments.  From the accounting point of view, insurance liabilities are represented by the 

incurred losses, while the risk management perspective requires analysis of the uncertainty in the 

actual cash flows which are represented by paid losses. A change in the value of the incurred losses 

reflects a change in the internal estimate of the unpaid loss.  A measure of variability of such 

estimates would not be representative of the intrinsic fluctuations in the paid losses, and, therefore, 

would not provide a measure of the risk of the associated cash flows. Also, the current practice of 

reserve setting is not based on statistically sound analysis of claim data and is subject to varying 

company policies. As a result, in ERM we concentrate on the development and fluctuations of the 

paid losses.  The incurred loss data may be used as a supplement in order to estimate the 

development beyond the period covered by the paid loss data on Schedule P (10 years). 

  



Loss Triangles and Link Ratios 
 
Historical loss data are conveniently organized in the form of triangles. 

Table 2.  Cumulative Paid Losses 
 

 Development Year 
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1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

5,012 8,269  10,907  11,805  13,539  16,181  18,009  18,608  18,662  18,834 
106 4,285 5,396  10,666  13,782  15,599  15,496  16,169  16,704 

3,410 8,992  13,873  16,141  18,735  22,214  22,863  23,466 
5,655  11,555  15,766  21,266  23,425  26,083  27,067 
1,092 9,565  15,836  22,169  25,955  26,180 
1,513 6,445  11,702  12,935  15,852 

557 4,020  10,946  12,314 
1,351 6,947  13,112 
3,133 5,395 
2,063 

 
 
 

The actuarial technique routinely used to analyze loss triangles is the “chain ladder link-ratios” 

method. In this approach, one finds average ratios of cumulative payments in each pair of adjacent 

development years. For example, the average ratio of payments in column 1 to same accident year 

payments in column 0 (averaging could be straight, dollar weighted, “excluding high-low,” etc.) 

would give the development factor between “ages” 0 and 1.  From a statistical point of view, this 

technique is based on the assumption that a cumulative payment in one development year is a 

predictor of the incremental payment in the next year, which means, in particular, that incremental 

payments of the same accident year are not independent.  On the contrary, statistical loss data 

analysis in the literature [14] and Seabury’s own research show that for most real loss development 

arrays, the incremental payments are independent random variables, and, therefore, standard 

development factor (link-ratio) techniques are inappropriate. 
 

This finding has important implications for both reserve setting (estimates of the mean) and risk 

analysis (estimates of uncertainty). First of all, it can be proven that the “chain ladder link-ratios” 

method produces upward-biased reserve estimates [18]. The consequence for the reserve uncertainty 

is rather subtle: under the assumptions behind the “chain ladder” approach, the probability 

distribution of the incremental payments would necessarily widen as a function of the development 

“age” (similarly to how the volatility of a common stock scales with time). The later development 

years would then make a bigger contribution to the reserve risk than their contribution to the reserve 

itself. On the other hand, under the assumption of statistically independent incremental payments, 



there is no inherent widening of the distribution with time—although the volatility may still increase 

late in the development because of the low number of claims remaining open. 
 

Statistical Modeling Framework 
 

It is clear from the above discussion that the natural way to analyze and model paid loss data is on 

the incremental rather than cumulative basis. 
 
 
 

Table 3.  Incremental Paid Losses 
 

 Development Year 
0 1 2 3 4 5 6 7 8 9 
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1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172 
106 4,179 1,111 5,270 3,116 1,817 (103) 673 535 

3,410 5,582 4,881 2,268 2,594 3,479 649 603 
5,655 5,900 4,211 5,500 2,159 2,658 984 
1,092 8,473 6,271 6,333 3,786 225 
1,513 4,932 5,257 1,233 2,917 

557 3,463 6,926 1,368 
1,351 5,596 6,165 
3,133 2,262 
2,063 

 
 
 

The incremental loss development array is subject to multiple trends acting in different directions: 

the natural loss development within each accident year (horizontal direction in Table 3), the change 

in exposure from one accident year to another (vertical direction), and inflation—since calendar 

years are represented by diagonals in Table 3, this last type of trend acts from one diagonal to 

another. Seabury ERM introduces a modeling framework for the incremental paid loss data that is 

able to capture all these trends. 

The model parameterizes the trends in each of the three directions—development years, accident 

years, and payment/calendar years.   In what follows, the development years are denoted by j, 

j = 0,1, 2, ..., s −1 ; accident years by i, i = 1, 2,..., s ; and payment years by t, t = 1, 2,..., s . 



 
 
 
 

Figure 3.  Trends in Loss Data 
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The payment year variable t can be expressed as t = i + j .  This relationship implies that both 
development and accident year trends are projected onto payment year trends. 

 
In its most general form, the model can be written as: 

 
⎛ j i + j ⎞ Pi , j  = exp ⎜αi  + ∑γ k  + ∑ιt  ⎜ + ε i , j   (3.2.14) 
⎝ k =1 t =1 ⎠ 

 
 
Here, Pi , j    is the incremental payment amount for accident year i and development year j—the 

payment takes place in payment year i + j ; ε i , j  is zero-mean random error (not necessarily normally 

distributed). 
 
The parameters αi in the accident year direction determine the level from year to year; often the 

 

level (after adjusting for exposures) shows little change over many years, requiring only a few 

parameters.  The parameters γ k 

 

in the development year direction represent the trend from one 
 

development year to the next. This trend is often linear (on the log scale) across many of the later 
 

development years, often requiring only one parameter to describe the tail of the data. The 

parameters ιt 

 

in the payment year direction describe the trend from payment year to payment year. 
 

If the original data are inflation adjusted, the payment year parameters represent superimposed 

(social) inflation, which may be stable for many years.  This is determined in the analysis. 

Consequently, the (optimal) identified model for a particular loss development array is likely to be 

parsimonious. This allows us to have a clearer picture of what is happening in the incremental loss 

process. 



j 

The distribution of variables Pi , j   in the model (3.2.14) is determined by the distribution of the 

random term ε i , j . It is well known that insurance losses exhibit long-tail distributions. Accordingly, 
the natural candidates would be such distributions as lognormal and fat-tail power-law family. Note 

that the random term in (3.2.14) is additive, so that the incremental payment might become negative. 

This is actually advantageous, because the real insurance data, due to the practices of salvage and 

subrogation, do exhibit this kind of anomaly (as evident from the data in Table 3). 
 

Implementation and Calibration 

The model defined by Eq. (3.2.14) is nonlinear and cannot be reduced to a linear regression. 

Accordingly, the parameters in (3.2.14) should be obtained through a nonlinear regression analysis 

(general nonlinear minimization). In the current ERM version, we accomplish a less ambitious goal 

and approximate Eq. (3.2.14) by a linear model on a log-scale: 
 

j i + j 

y(i, j) ≡ ln(Pi , j ) = αi + ∑γ k  + ∑ιt + ε i , j . (3.2.15) 
k =1 t =1 

 
 
Note that Equation (3.2.15) does not allow negative incremental payments; therefore, we are forced 

to drop negative data points from the historical data. 

The original equation (3.2.14) has an inherent advantage missing from (3.2.15): any scheme used for 

minimization the random terms in (3.2.14) would be dominated by the large dollar amounts (usually, 

early development years), precisely the ones that contribute most into the risk of the future 

payments.  In the log-scale model (3.2.15), if one were to perform an ordinary least-squares 

regression (OLS), the parameters could be driven by the large variations in the small dollar amounts 

of the old development age. Therefore, our approximation of (3.2.14) by (3.2.15) makes it necessary 

to perform a weighted least-squares regression in (3.2.15), the weights being the payments 

themselves. 

 

Pi , j   

 
The random term in (3.2.15) is assumed to be normal, so that the incremental payments follow a 
lognormal distribution.  We do not assume, however, that the error terms ε i , j   come from a single 

distribution. Instead, we model ε i , j  as N (0,σ (Pi , j )) , where the standard deviation σ (Pi , j ) becomes 

a function of the incremental payment Pi , j . The chosen scheme of weighted least-square regression 
implies that the variances σ 2 

 

are inversely proportional to 
 

Pi , j , the proportionality factor being 

determined by the regression. We, however, make an additional step and assume that σ (Pi , j ) is a 



i , j i , j i , j   

general non-increasing function of Pi , j .  This assumption is motivated by our research that shows 
 

that the payment volatility (on log-scale) remains practically constant over a wide range of payment 

magnitude, but once the payments drop below a certain threshold, the volatility begins to increase. 

Therefore, having done the weighted regression as discussed above, we perform an additional non- 

parametric fit of the squared residuals with a monotonous (more specifically, non-increasing) 

function of Pi , j ; this least-square fit is weighted, Pi , j  being the weights again. The resulting function 

provides the required estimate of variance σ 2 (P  ) : i , j   
 

ε 2    = σ 2 (P ) +υ  , i , j i , j i , j   

σ 2 (P) ≤ σ 2 (P′) for P > P′. 
(3.2.16) 

 
 

In Eq. (3.2.16), υ is an error term; if ε 2     happens to be non-increasing as a function of P  , then 
all υi , j   would be equal to 0. 

 
Theoretically speaking, Eq. (3.2.15) is overparameterized by one parameter and exhibits “perfect” 

 

multicolinearity: it remains invariant under the transformation 
 

ιi  = ιi  − Ι, γ i  = γ i + Ι, αi  = αi + iΙ , (3.2.17) 
 
 
where I is arbitrary.  As a result, the mean level of the inflation over all payment years cannot be 
determined (it is included in the development factors γ i ); only the deviations from the mean level 

can be calculated. This situation would change if we knew the accident year exposures so that we 
could normalize the incremental payments and set all αi  to be equal to each other. Unfortunately, 

we are unaware of any publicly available information about the exposures or suitable proxies. 

Accident year premiums, in particular, cannot serve as good proxies for exposures due to the varying 

premium rates over a business cycle. In the absence of the company’s exposure data, we get rid of 

multi-colinearity by setting 
 

ι1  = 0 ; (3.2.18) 
 

this means that the rest of the ι parameters measure the difference between inflation in their 

respective years and that in year 1. 
 
Even though Eq. (3.2.15) with restriction (3.2.18) exhibits no theoretical (“perfect”) multicolinearity, 

it still has too many fitting parameters to be of practical use in forecasting.  In particular, it is 



  

reasonable to require that the development pattern captured by γ i  represents a smooth curve. Yet, as 

long as all γ i 
 

are estimated independently, this condition cannot be guaranteed.  We will both 
 

achieve a parsimonious model suitable for forecasting and ensure smooth development patterns if we 
 

significantly reduce the number of parameters in (3.2.15) by setting some of them equal to each 
 

other or to zero. For instance, we might require that, for a given line of business, γ1  = γ 2 , 

γ 3  = γ 4  = 0 , γ 5  = γ 6  = … = γ s −1 , and ι2  = ι3  = … = ιs  .  We refer to such specifications as a “model 
structure”. We determine the proper model structure for each line of business based on the industry- 

wide experience. The concrete values of the parameters remaining in the model and their standard 

deviations can then be determined for each company; these values can possibly be credibility 

weighted with the results of the industry cross-sectional analysis. 

Because parameters γ i  and ιi   represent trends that will accumulate when we set some of them equal, 

we need to account for a “model risk” by making the parameters themselves normally distributed 

random variables.  In the example above, in each scenario we would need to simulate two γ 
parameters, one ι parameter, and only afterwards all the random terms ε i , j . The mean values and 

the standard deviations for this simulation are the output of the regression (3.2.15).  Note that 

parameters αi 

 

are not trends; these parameters should simply be set to their regression estimates 
 

rather than simulated. 
 
Note that parameterization is such that in any forecast (simulation) we set the future values of 

parameters αi , γ i , and ιi 

 

to be the same as in the last year available from the regression. 
 
In order to account for correlations between the insurance lines and the correlations between assets 

 

and liabilities, we regress the normalized error terms ε i , j   σ (Pi , j ) 
 

against the assets’ Principal 
 

Components and then perform the Principal Component Analysis on the residuals of that regression. 
 

As the end result of this analysis, the random term in (3.2.15) is represented as a linear combination 

of Principal Components of both assets, 

random term: 

 

PC asset , and liabilities, 
 

PC liability , plus an idiosyncratic 

 
M N 

 
i , j i , j   ∑ i + j ,m i + j ,m

 

∑ i + j ,n i + j ,n

 
 

i , j   ε σ (P ) = 
m =1 C asset 

× PC asset
 

+ 
n =1 

C liability × PC liability + ε 
, (3.2.19) 

 
 
where ε i , j   are i.i.d. N (0,σ ) , M is the number of principal factors on the asset side and N is the 

 

number of factors on the liability side. 



Underwriting Risk (New Business) 
 
The uncertainty of the loss payments associated with the prior accident years (Old Business)— 

usually referred to as reserve risk—is captured by the model introduced in the previous sections. 

The same model is used in ERM to describe the loss uncertainty of the new business that will be 

written between today and the horizon. This future business has one more component that we have 

not covered yet—the uncertainty of the collected premium. Insurance premium collected per unit of 

risk (premium rate) is subject to market forces; as a result, the insurance industry has gone through 

well documented business cycles of “hard” and “soft” markets. Even though the uncertainty of the 

rate forecast between today and the one-year horizon is usually much less than the rate variations 

over an entire business cycle, the random element in the future premium cannot be removed. 
 

Historically, the insurance business cycles have not coincided with the economic cycles. 

Nonetheless, the existence of a relationship between premium rates and the economic environment, 

in particular, the interest rates, is well known [19]–[22]. Since most collected premiums get invested 

into fixed income instruments, a hike in the interest rates will result in greater investment income 

associated with the new policies. In a competitive market environment, this will result in additional 

pressure towards lowering the premium charged per unit of risk. This negative correlation between 

interest rates and premium rates is more pronounced in casualty lines where claims are settled long 

after the premiums are collected than for short-tailed property lines. 
 

Within Seabury ERM, premium rates are modeled as log-normally distributed variables; the 

correlations between rates in different lines and between rates and the financial risk factors are 

estimated based on the industry-wide data. 
 

Catastrophe Risk 

Losses due to natural catastrophes (CAT losses) are rare events with very high impact.  The CAT 

loss distributions exhibit highly non-normal (fat-tailed) behavior.   The company specific 

distributions depend on the geography of the insured properties and businesses.  As a result, such 

losses are notoriously difficult to model reliably, and the distributions are provided by just a few 

vendors who specialize in CAT risk. When the distribution is available however, it is relatively easy 

to include the CAT risk into the overall framework of ERM. Within the simulation model, we need 

to add catastrophic losses drawn from the CAT distribution to the losses generated in our regular 

model (3.2.15). This procedure will result in adjusted αi  (and possibly γ k , if we assume that CAT 



loss development is different from that of the regular losses) in such catastrophic scenarios.  

In addition, the CAT scenarios will have significant reinsurance receivables, hence additional 

credit risk (see below).  The real difficulty with catastrophic risk within a Monte Carlo 

approach stems from the necessity to estimate the risk measures dominated by rare events. In 

Appendix D:, we show how application of importance sampling and robust estimators can 

overcome these problems. 
 

Reinsurance Receivables: Credit 
Risk 

 
Reinsurance receivables, in particular those due the ceded catastrophe risk, constitute the 

greatest portion of the credit risk faced by an insurance company. Seabury ERM breaks down 

reinsurance receivables by the reinsurer and then proxies the credit risk of the receivables by the 

credit risk of a portfolio of risky bonds. The credit rating of the reinsurer gets assigned to the 

bond, and the amount of each receivable becomes the bond face value. 


